首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A multidisciplinary approach to the study of peripheral nerve regeneration in the cat has been presented. The purpose of this work has been to determine if pulsing electromagnetic field (PEMF) therapy can enhance peripheral nerve regeneration after injury. In equal groups of animals, two types of pulsing electromagnetic field treatment were compared with untreated controls. All animals underwent quantitative electrophysiologic and morphologic assessment at the area of injury. In addition, muscle fiber sizing in the periphery and retrograde labeling of anterior horn motoneurons with horseradish peroxidase were studied. Results have shown no statistical differences between the groups in electrophysiologic or morphologic parameters. However, in animals treated with a pulse-burst electromagnetic field there was a statistically significant improvement in the labeling and localization of anterior horn cells in the central nervous system. These results indicate that pulse-burst electromagnetic radiation can increase the numbers of motor neurons that reestablish appropriate connections to the periphery after nerve injury. It remains to be seen if this improved spinal cord organization can translate to improved peripheral functional return.  相似文献   

2.
3.
Despite advances in surgical techniques for peripheral nerve repair, functional restitution remains incomplete. The timing of surgery is one factor influencing the extent of recovery but it is not yet clearly defined how long a delay may be tolerated before repair becomes futile. In this study, rats underwent sciatic nerve transection before immediate (0) or 1, 3, or 6 months delayed repair with a nerve graft. Regeneration of spinal motoneurons, 13 weeks after nerve repair, was assessed using retrograde labeling. Nerve tissue was also collected from the proximal and distal stumps and from the nerve graft, together with the medial gastrocnemius (MG) muscles. A dramatic decline in the number of regenerating motoneurons and myelinated axons in the distal nerve stump was observed in the 3- and 6-months delayed groups. After 3 months delay, the axonal number in the proximal stump increased 2–3 folds, accompanied by a smaller axonal area. RT-PCR of distal nerve segments revealed a decline in Schwann cells (SC) markers, most notably in the 3 and 6 month delayed repair samples. There was also a progressive increase in fibrosis and proteoglycan scar markers in the distal nerve with increased delayed repair time. The yield of SC isolated from the distal nerve segments progressively fell with increased delay in repair time but cultured SC from all groups proliferated at similar rates. MG muscle at 3- and 6-months delay repair showed a significant decline in weight (61% and 27% compared with contra-lateral side). Muscle fiber atrophy and changes to neuromuscular junctions were observed with increased delayed repair time suggestive of progressively impaired reinnervation. This study demonstrates that one of the main limiting factors for nerve regeneration after delayed repair is the distal stump. The critical time point after which the outcome of regeneration becomes too poor appears to be 3-months.  相似文献   

4.
A study of the effect of weak, interrupted sinusoidal low frequency magnetic field (ISMF) stimulation on regeneration of the rat sciatic nerve was carried out. In the experiment, 60 Wistar rats were used: 24 rats underwent unilateral sciatic nerve transection injury and immediate surgical nerve repair, 24 rats underwent unilateral sciatic nerve crush injury, and the remaining 12 rats underwent a sham surgery. Half of the animals (n = 12) with either sciatic nerve lesion were randomly chosen and exposed between a pair of Helmholtz coils for 3 weeks post-injury, 4 h/day, to an interrupted (active period to pause ratio = 1.4 s/0.8 s) sinusoidal 50 Hz magnetic field of 0.5 mT. The other half of the animals (n = 12) and six rats with sham surgery were used for two separate controls. Functional recovery was followed for 6 weeks for the crush injuries and 7(1/2) months for the transection injuries by video assisted footprint analysis in static conditions and quantified using a recently revised static sciatic index (SSI) formula. We ascertained that the magnetic field influence was weak, but certainly detectable in both injury models. The accuracy of ISMF influence detection, determined by the one-way repeated measures ANOVA test, was better for the crush injury model: F(1, 198) = 9.0144, P = .003, than for the transection injury model: F(1, 198) = 6.4826, P = .012. The Student-Newman-Keuls range test for each response day yielded significant differences (P < .05) between the exposed and control groups early in the beginning of functional recovery and later on from the points adjacent to the beginning of the plateau, or 95% of functional recovery, and the end of observation. These differences probably reflect the ISMF systemic effect on the neuron cell bodies and increased and more efficient reinnervation of the periphery.  相似文献   

5.
The majority of bioengineering strategies to promote peripheral nerve regeneration after injury have focused on therapies to bridge large nerve defects while fewer therapies are being developed to treat other nerve injuries, such as nerve transection. We constructed delivery systems using fibrin gels containing either free GDNF or polylactide–glycolic acid (PLGA) microspheres with GDNF to treat delayed nerve repair, where ELISA verified GDNF release. We determined the formulation of microspheres containing GDNF that optimized nerve regeneration and functional recovery in a rat model of delayed nerve repair. Experimental groups underwent delayed nerve repair and treatment with GDNF microspheres in fibrin glue at the repair site or control treatments (empty microspheres or free GDNF without microspheres). Contractile muscle force, muscle mass, and MUNE were measured 12 weeks following treatment, where GDNF microspheres (2 weeks formulation) were superior compared to either no GDNF or short‐term release of free GDNF to nerve. Nerve histology distal to the repair site demonstrated increased axon counts and fiber diameters due to GDNF microspheres (2 weeks formulation). GDNF microspheres partially reversed the deleterious effects of chronic nerve injury, and recovery was slightly favored with the 2 weeks formulation compared to the 4 weeks formulation. Biotechnol. Bioeng. 2013; 110: 1272–1281. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Functional recovery is usually poor following peripheral nerve injury when reinnervation is delayed. Early innervation by sensory nerve has been indicated to prevent atrophy of the denervated muscle. It is hypothesized that early protection with sensory axons is adequate to improve functional recovery of skeletal muscle following prolonged denervation of mixed nerve injury. In this study, four groups of rats received surgical denervation of the tibial nerve. The proximal and distal stumps of the tibial nerve were ligated in all animals except for those in the immediate repair group. The experimental groups underwent denervation with nerve protection of peroneal nerve (mixed protection) or sural nerve (sensory protection). The experimental and unprotected groups had a stage II surgery in which the trimmed proximal and distal tibial nerve stumps were sutured together. After 3 months of recovery, electrophysiological, histological and morphometric parameters were assessed. It was detected that the significant muscle atrophy and a good preserved structure of the muscle were observed in the unprotected and protective experimental groups, respectively. Significantly fewer numbers of regenerated myelinated axons were observed in the sensory-protected group. Enhanced recovery in the mixed protection group was indicated by the results of the muscle contraction force tests, regenerated myelinated fiber, and the results of the histological analysis. Our results suggest that early axons protection by mixed nerve may complement sensory axons which are required for promoting functional recovery of the denervated muscle natively innervated by mixed nerve.  相似文献   

7.
BackgroundElectrical stimulation (ES) has been shown to promote nerve regeneration in rats with experimental diabetes induced using streptozotocin (STZ). However, the time-course effect of ES on nerve regeneration of diabetic animals has not been reported in previous studies. The present study attempted to examine the effect of different timing of ES after peripheral nerve transection in diabetic rats.Methodology/FindingsFifty Sprague-Dawley rats were used in the study. They were classified into five groups. STZ-induced diabetes was created in groups A to D. Normal animals in group E were used as the non-diabetic controls. The sciatic nerve was transected and repaired using a silicone rubber conduit across a 10-mm gap in all groups. Groups A to C received ES for 15 minutes every other day for 2 weeks. Stimulation was initiated on day 1 following the nerve repair for group A, day 8 for group B, and day 15 for group C. The diabetic control group D and the normal control group E received no ES. At 30 days after surgery in group A, histological evaluations showed a higher success percentage of regeneration across the 10-mm nerve gap, and the electrophysiological results showed significantly larger mean values of evoked muscle action potential area and amplitude of the reinnervated gastrocnemius muscle compared with group D.Conclusions/SignificanceIt is concluded that an immediate onset of ES may improve the functional recovery of large nerve defect in diabetic animals.  相似文献   

8.
Although the rat sciatic nerve model is used extensively in the investigation of repair techniques, and a variety of evaluation methods utilized to assess the results, a means to measure directly and accurately the return of function in these animals is absent. Histologic, histomorphometric, and electrophysiologic methods can be reliable indicators of nerve regeneration but do not correlate to functional recovery. The purposes of this study were to develop apparatus to continuously measure ground reaction forces (GRF) and use GRF parameters in the assessment of gait parameters in normal rats preoperatively and following peripheral nerve severance and repair. Three neurorrhaphy methods: direct sciatic nerve repair, direct tibial nerve repair and double sciatic nerve repair simulating autograft, as well as a non-repaired tibial nerve transection were evaluated. The testing apparatus was designed to measure the spontaneous and voluntary effort of the rat with objective data. Three orthogonal components - vertical, craniocaudal (braking and propulsion), and mediolateral - of the ground reaction force were measured. Preoperative data showed that vertical forces were comparable among the four limbs but propulsion and braking forces displayed significant differences. At 12 weeks, functional recovery was most evident in the direct tibial nerve repair group and absent in the non-repaired tibial defect group. Direct sciatic nerve repairs and sciatic nerve grafts resulted in lesser degrees of improvement. Results indicated that the propulsive force is the optimal GRF parameter for evaluating recovery of useful function.  相似文献   

9.
Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediated transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a promising strategy for peripheral nerve repair.  相似文献   

10.
Using a rat hindlimb model, the authors tested the hypothesis that, in muscles reinnervated after long-term denervation, atrophy-dependent and atrophy-independent mechanisms operate independently to produce force deficits. In adult rats, gastrocnemius muscles were subjected to denervation via tibial nerve transection. Reconstruction of the nerve lesion was delayed for periods ranging from 2 weeks to 1 year. After a minimum recovery period of 6 months after nerve repair, muscle mass and maximum isometric tetanic force were measured and specific force was calculated for each muscle (n = 40 muscles from 23 animals). After recovery, observed deficits in muscle mass and maximum tetanic force were directly proportional to the denervation interval. On the other hand, the deficit in specific force was not proportional to the denervation interval; all groups in which the nerve reconstruction was delayed for a month or longer demonstrated a deficit of 30 percent to 50 percent. These data support our hypothesis that, after prolonged denervation followed by reinnervation, the magnitude of the deficit in whole muscle force does not parallel the deficit in specific force. These data support the idea that mechanisms governing muscle atrophy are independent of those resulting in specific force deficits.  相似文献   

11.
Peripheral nerve injury (PNI) is a common disease that often results in axonal degeneration and the loss of neurons, ultimately leading to limited nerve regeneration and severe functional impairment. Currently, there are no effective treatments for PNI. In the present study, we transduced conserved dopamine neurotrophic factor (CDNF) into mesenchymal stem cells (MSCs) in collagen tubes to investigate their regenerative effects on rat peripheral nerves in an in vivo transection model. Scanning electron microscopy of the collagen tubes demonstrated their ability to be resorbed in vivo. We observed notable overexpression of the CDNF protein in the distal sciatic nerve after application of CDNF-MSCs. Quantitative analysis of neurofilament 200 (NF200) and S100 immunohistochemistry showed significant enhancement of axonal and Schwann cell regeneration in the group receiving CDNF-MSCs (CDNF-MSCs group) compared with the control groups. Myelination thickness, axon diameter and the axon-to fiber diameter ratio (G-ratio) were significantly higher in the CDNF-MSCs group at 8 and 12 weeks after nerve transection surgery. After surgery, the sciatic functional index, target muscle weight, wet weight ratio of gastrocnemius muscle and horseradish peroxidase (HRP) tracing demonstrated functional recovery. Light and electron microscopy confirmed successful regeneration of the sciatic nerve. The greater numbers of HRP-labeled neuron cell bodies and increased sciatic nerve index values (SFI) in the CDNF-MSCs group suggest that CDNF exerts neuroprotective effects in vivo. We also observed higher target muscle weights and a significant improvement in muscle atrophism in the CDNF-MSCs group. Collectively, these findings indicate that CDNF gene therapy delivered by MSCs is capable of promoting nerve regeneration and functional recovery, likely because of the significant neuroprotective and neurotrophic effects of CDNF and the superior environment offered by MSCs and collagen tubes.  相似文献   

12.
We report our experience in the treatment of congenital pseudarthrosis with pulsing electromagnetic fields in a controlled study. Both the stimulated and control groups received the same surgical procedure: excision of the pseudarthrosis site, reduction and fixation by intramedullary nail. Stimulation with electromagnetic fields was begun within 3 days after surgery. The orthopaedic treatment was the same for all patients. The stimulation lasted up to 12 months. All patients were followed at least 24 months after the surgery. The data showed that the surgical approach in association with pulsing electromagnetic-field stimulation gave significantly better results than surgery alone.  相似文献   

13.
Despite highest standards in nerve repair, functional recovery following nerve transection still remains unsatisfactory. Nonspecific reinnervation of target organs caused by misdirected axonal growth at the repair site is regarded as one reason for a poor functional outcome. This study was conducted to establish a method for preventing aberrant reinnervation between transected and repaired nerves in adjacency. Rat sciatic nerve was transected and repaired as follows: epineural sutures of the sciatic nerve (group A, n = 6), fascicular repair of tibial and peroneal nerves respectively (group B, n = 8), and, as in group B, separating both nerves using a pedicle fat flap as barrier (group C, n = 8). As control only, the tibial nerve was transected and repaired (group D, n = 5). Muscle contraction force of the gastrocnemius muscle was significantly higher in group C as compared with groups A and B after 4 months. Muscle weight showed significantly lower values in group A as compared with groups B, C, and D. Histologic examination in group C revealed little growth of axons from the tibial to the peroneal nerve and vice versa. This axon crossing was observed only when gaps between the fat cells were available. These findings were confirmed by a significantly lower rate of misdirected axonal growth as compared with groups A and B using sequential retrograde double labeling technique of the soleus motoneuron pool. We conclude that a pedicle fat flap significantly prevents aberrant reinnervation between repaired adjacent nerves resulting in significantly improved motor recovery in rats. Clinically, this is of importance for brachial plexus, sciatic nerve, and facial nerve repair.  相似文献   

14.
Two groups of consecutive patients from two different plastic surgical practice populations were evaluated to determine psychosocial differences between those who underwent immediate (n = 25) versus delayed (n = 38) breast reconstruction. Psychological assessment consisted of a standardized symptom inventory (BSI) and a specially designed self-report questionnaire investigating reactions unique to mastectomy and reconstruction. Both groups were extremely equivalent with regard to sociodemographic data, with the typical subject being a well-educated and employed Caucasian wife. Verbal reports of physical complaints revealed no significant differences between the two groups except for difficulty with arm movement, which was statistically higher for the immediate group (p = 0.006.). This difference most likely was due to the axillary dissection being performed simultaneously at the time of reconstruction. The relationship between timing of reconstruction and self-reported distress over the mastectomy experience revealed that only 25 percent of the women who underwent immediate repair reported "high distress" in recalling their mastectomy surgery compared with 60 percent of the delayed reconstruction group (p = 0.02). In reference to the two scales measuring psychological symptoms, a general trend was present, with the delayed group scoring higher (although not statistically significantly) on 9 of our 12 scales. Ninety-six percent of the immediate group and 89 percent of the delayed group reported satisfaction with results.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Mechanical function of muscle reinnervated by end-to-side neurorrhaphy.   总被引:6,自引:0,他引:6  
End-to-side neurorrhaphy is a surgical technique for peripheral nerve reconstruction when end-to-end neurorrhaphy is not an option. To define the effectiveness of end-to-side neurorrhaphy as a method of nerve repair, the authors tested the null hypothesis: there is no difference in the mechanical function of skeletal muscle denervated and reinnervated by end-to-side versus end-to-end neurorrhaphy. Adult Lewis rats underwent either transection and end-to-end epineurial repair of the left peroneal nerve (n = 9) or end-to-side repair of the distal stump of the peroneal nerve to the side of the tibial nerve (n = 8). After a 6-month recovery period, isometric force (Fo) was measured, and specific force (sFo) was calculated for the extensor digitorum longus muscle of each animal. Immunohistochemical staining for neural cell adhesion molecule (NCAM) was performed to identify populations of denervated muscle fibers. The mean extensor digitorum longus muscle mass in the end-to-end group (195 +/- 32 g) was significantly greater than that of the end-to-side group (146 +/- 55 g) (p < 0.05). A significantly greater percentage of denervated fibers was identified in the extensor digitorum longus muscles of animals in the end-to-side group (9.4 +/- 3.2 percent) than in those in the end-to-end group (3.8 +/- 1.0 percent) (p < 0.05). Despite a lower muscle mass and a higher percentage of denervated fibers, neither Fo nor sFo was significantly different in the two groups. These data support the null hypothesis that, under appropriate circumstances, there is no difference in the recovery of whole muscle force and specific force production in muscles reinnervated by end-to-side versus end-to-end neurorrhaphy.  相似文献   

16.
Walking track analysis: a long-term assessment of peripheral nerve recovery.   总被引:23,自引:0,他引:23  
Functional recovery following sciatic, tibial, and peroneal nerve injury was assessed over a 1-year period using walking track analysis in the rat. Internal neurolysis did not affect nerve function. Crush injury induced a temporary, but complete, loss of function that recovered to control levels by 4 weeks. Nerve transection resulted in complete loss of function without any evidence of recovery. After nerve repair, functional recovery occurred, reaching near-optimal recovery by 12 weeks. The degree of functional recovery varied with the specific nerve involved. The sciatic nerve recovered 41 percent of function, whereas the tibial nerve recovered 54 percent of function. The peroneal nerve exhibited the highest degree of recovery, achieving functional levels similar to control values. Assessment of neural regeneration using walking track analysis appears to be a valuable addition to the traditional methods of histology and electrophysiology.  相似文献   

17.
Abstract: The phospholipid composition of normal peripheral nerve as a function of developmental age as well as that of Wallerian-degenerated nerve as a function of age at nerve transection and duration of Wallerian degeneration have been quantitated in rabbit sciatic nerve. During development, increases in the proportions of ethanolamine plasmalogen, sphingomyelin, and combined phosphatidyl serine plus phosphatidyl inositol and decreases in the proportions of phosphatidyl choline and phosphatidyl ethanolamine correlated well with the concurrent myelin accretion. During Wallerian degeneration, age-dependent changes in phospholipid composition were observed. The large and statistically significant increase in the proportion of phosphatidyl choline and decrease in the proportion of ethanolamine plasmalogen were manifest promptly in nerves transected at 2 weeks of age but in a delayed manner in nerves transected at 8, 12, and 20 weeks of age. The rate of loss of individual phospholipids was greater in nerves transected at younger ages. The findings from normal developing peripheral nerve may well serve as baseline data for subsequent studies of phospholipid composition in pathological peripheral nerve. The Findings from Wallerian-degenerated peripheral nerve provide additional evidence for age-dependent chemical changes occurring in Wallerian-degenerated peripheral nerve that may be of significance in explaining the superior functional recovery from peripheral nerve injury observed in younger compared with older subjects.  相似文献   

18.
Abstract. Access to the ventral nerve cord in living specimens of Lumbriculus variegatus , an aquatic oligochaete, is normally impossible because surgical invasion induces segmental autotomy (self-fragmentation). We show here that nicotine is a powerful paralytic agent that reversibly immobilizes worms, blocks segmental autotomy, and allows experimental access to the nerve cord. Using nicotine-treated worms, we transected the ventral nerve cord and used non-invasive electrophysiological recordings and behavioral analyses to characterize the functional recovery of giant nerve fibers and other reflex pathways. Initially, after transection, medial giant fiber (MGF) and lateral giant fiber (LGF) spikes conducted up to, but not across, the transection site. Reestablishment of MGF and LGF through-conduction across the transection site occurred as early as 10 h (usually by 20 h) after transection. Analyses of non-giant-mediated behavioral responses (i.e., helical swimming and body reversal) were also made following nerve cord transection. Immediately after transection, functional reorganization of touch-evoked locomotor reflexes occurred, so that the two portions of the worm anterior and posterior to the transection site were independently capable of helical swimming and body reversal responses. Similar reorganization of responses occurred in amputated body fragments. Reversion back to the original whole-body pattern of swimming and reversal occurred as early as 8 h after transection. Thus, functional restoration of the non-giant central pathways appeared slightly faster than giant fiber pathways. The results demonstrate the remarkable plasticity of locomotor reflex behaviors immediately after nerve cord transection or segment amputation. They also demonstrate the exceptional speed and specificity of regeneration of the central pathways that mediate locomotor reflexes.  相似文献   

19.
Red/near-infrared irradiation therapy (R/NIR-IT) delivered by laser or light-emitting diode (LED) has improved functional outcomes in a range of CNS injuries. However, translation of R/NIR-IT to the clinic for treatment of neurotrauma has been hampered by lack of comparative information regarding the degree of penetration of the delivered irradiation to the injury site and the optimal treatment parameters for different CNS injuries. We compared the treatment efficacy of R/NIR-IT at 670 nm and 830 nm, provided by narrow-band LED arrays adjusted to produce equal irradiance, in four in vivo rat models of CNS injury: partial optic nerve transection, light-induced retinal degeneration, traumatic brain injury (TBI) and spinal cord injury (SCI). The number of photons of 670 nm or 830 nm light reaching the SCI injury site was 6.6% and 11.3% of emitted light respectively. Treatment of rats with 670 nm R/NIR-IT following partial optic nerve transection significantly increased the number of visual responses at 7 days after injury (P≤0.05); 830 nm R/NIR-IT was partially effective. 670 nm R/NIR-IT also significantly reduced reactive species and both 670 nm and 830 nm R/NIR-IT reduced hydroxynonenal immunoreactivity (P≤0.05) in this model. Pre-treatment of light-induced retinal degeneration with 670 nm R/NIR-IT significantly reduced the number of Tunel+ cells and 8-hydroxyguanosine immunoreactivity (P≤0.05); outcomes in 830 nm R/NIR-IT treated animals were not significantly different to controls. Treatment of fluid-percussion TBI with 670 nm or 830 nm R/NIR-IT did not result in improvements in motor or sensory function or lesion size at 7 days (P>0.05). Similarly, treatment of contusive SCI with 670 nm or 830 nm R/NIR-IT did not result in significant improvements in functional recovery or reduced cyst size at 28 days (P>0.05). Outcomes from this comparative study indicate that it will be necessary to optimise delivery devices, wavelength, intensity and duration of R/NIR-IT individually for different CNS injury types.  相似文献   

20.
Yee  KK; Costanzo  RM 《Chemical senses》1998,23(5):513-519
Following recovery from olfactory nerve transection, animals regain their ability to discriminate between odors. Odor discrimination is restored after new neurons establish connections with the olfactory bulb. However, it is not known if the new connections alter odor quality perception. To address this question, 20 adult hamsters were first trained to discriminate between cinnamon and strawberry odors. After reaching criterion (> or = 90% correct response), half of the animals received a bilateral nerve transection (BTX) and half a surgical sham procedure. Animals were not tested again until day 40, a point in recovery when connections are re-established with the bulb. When BTX animals were tested without food reinforcement, they could not perform the odor discrimination task. Sham animals, however, could discriminate, demonstrating that the behavioral response had not been extinguished during the 40 day period. When reinforcement was resumed, BTX animals were able to discriminate between cinnamon and strawberry after four test sessions. In addition, their ability to discriminate between these two familiar odors was no different than that of BTX and sham animals tested with two novel odors, baby powder and coffee. These findings suggest that, after recovery from nerve transection, there are alterations in sensory perception and that restoration of odor quality discrimination requires that the animal must again learn to associate individual odor sensations with a behavioral response.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号