首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Neuroplasticity of the spinal cord following electroacupuncture (EA) has been demonstrated although little is known about the possible underlying mechanism. This study evaluated the effect of EA on expression of neurotrophins in the lamina II of the spinal cord, in cats subjected to dorsal rhizotomy. Cats received bilateral removal of L1–L5 and L7–S2 dorsal root ganglia (DRG, L6 DRG spared) and unilateral EA. They were sacrificed 7 days after surgery, and the L6 spinal segment removed and processed by immunohistochemistry and in situ hybridization histochemistry, to demonstrate the expression of neurotrophins. Significantly greater numbers of nerve growth factor (NGF) and neurotrophin-3 (NT-3) positive neurons, brain-derived neurotrophic factor (BDNF) immunoreactive varicosities and NT-3 positive neurons and glial cells were observed in lamina II on the acupunctured (left) side, compared to the non-acupunctured, contralateral side. Greater number of neurons expressing NGF mRNA was also observed on the acupunctured side. No signal for mRNA to BDNF and NT-3 was detected. The above findings demonstrate that EA can increase the expression of endogenous NGF at both the mRNA and protein level, and BDNF and NT-3 at the protein level. It is postulated that EA may promote the plasticity of the spinal cord by inducing increased expression of neurotrophins.  相似文献   

2.
The age-dependent trophic responses of sympathetic, sensory, and nodose neurons to the neuro-trophins NGF, BDNF, and NT-3 and to glial cell line-derived neurotrophic factor (GDNF) were examined by an explant culture system. Superior cervical ganglia (SCG), dorsal root ganglia (DRG), and nodose ganglia (NG) were removed from rat embryos (E18), neonatals ( 1 day old), young adults (3–6 months old), and aged adults (>24 months old). The ganglia were cultured with and without each neurotrophic factor; the neurite extension and neurite density were then assessed. The SCG from rats of all ages were significantly influenced by NGF, NT-3, and GDNF; the effects of NT-3 and GDNF were reduced after maturation. The DRG from embryos and neonates were influenced by all neurotrophic factors; however, the effects of BDNF and NT-3 disappeared after maturation. The GDNF showed little effect on adult DRG and no effect on aged DRG. The effect of NGF was preserved over all ages of DRG. The NG from embryonic rats were significantly responsive to BDNF and GDNF; their effects decreased in the neonatal NG, but a minimum effect remained in the aged NG. These results indicate that age-dependent profiles of trophic effects differ extensively among the lineages of the peripheral nervous system and also among the individual neurotrophic factors.  相似文献   

3.
We describe a new procedure to determine whether regional alterations in the evolutionary constraints imposed on paralogous proteins have occurred. We used as models the A and B (alternatively called α and β) subunits of V/F/A-ATPases, originated by a gene duplication more than 3 billion years ago. Changes associated to three major splits (eubacteria versus Archaea-eukaryotes; Archaea versus eukaryotes; and among free-living bacteria and symbiotic mitochondria) were studied. Only in the first case, when we compared eubacterial or mitochondrial F-ATPases versus eukaryotic vacuolar V-ATPases or archaeal A-ATPases, constraint changes were observed. Modifications in the degree of regional constraining were not detected for the other two types of comparisons (V-ATPases versus A-ATPases and within F-ATPases, respectively). When the rates of evolution of the two subunits were compared, it was found that F-ATPases regulatory subunits evolved faster than catalytic subunits, but the opposite was true for A- and V-ATPases. Our results suggest that, even for universal and essential proteins, selective constraints may be occasionally altered. On the other hand, in some cases no changes were detected after periods of more than 2.2 billion years. Received: 24 February 2000 / Accepted: 12 August 2000  相似文献   

4.
In adult rat brains, brain-derived neurotrophic factor (BDNF) rhythmically oscillates according to the light-dark cycle and exhibits unique functions in particular brain regions. However, little is known of this subject in juvenile rats. Here, we examined diurnal variation in BDNF and neurotrophin-3 (NT-3) levels in 14-day-old rats. BDNF levels were high in the dark phase and low in the light phase in a majority of brain regions. In contrast, NT-3 levels demonstrated an inverse phase relationship that was limited to the cerebral neocortex, including the visual cortex, and was most prominent on postnatal day 14. An 8-h phase advance of the light-dark cycle and sleep deprivation induced an increase in BDNF levels and a decrease in NT-3 levels in the neocortex, and the former treatment reduced synaptophysin expression and the numbers of synaptophysin-positive presynaptic terminals in cortical layer IV and caused abnormal BDNF and NT-3 rhythms 1 week after treatment. A similar reduction of synaptophysin expression was observed in the cortices of Bdnf gene-deficient mice and Ca(2+)-dependent activator protein for secretion 2 gene-deficient mice with abnormal free-running rhythm and autistic-like phenotypes. In the latter mice, no diurnal variation in BDNF levels was observed. These results indicate that regular rhythms of BDNF and NT-3 are essential for correct cortical network formation in juvenile rodents.  相似文献   

5.
Neurotrophic factors in Alzheimer's disease: role of axonal transport   总被引:4,自引:0,他引:4  
Neurotrophic factors (NTF) are small, versatile proteins that maintain survival and function to specific neuronal populations. In general, the axonal transport of NTF is important as not all of them are synthesized at the site of its action. Nerve growth factor (NGF), for instance, is produced in the neocortex and the hippocampus and then retrogradely transported to the cholinergic neurons of the basal forebrain. Neurodegenerative dementias like Alzheimer's disease (AD) are linked to deficits in axonal transport. Furthermore, they are also associated with imbalanced distribution and dysregulation of NTF. In particular, brain-derived neurotrophic factor (BDNF) plays a crucial role in cognition, learning and memory formation by modulating synaptic plasticity and is, therefore, a critical molecule in dementia and neurodegenerative diseases. Here, we review the changes of NTF expression and distribution (NGF, BDNF, neurotrophin-3, neurotrophin-4/5 and fibroblast growth factor-2) and their receptors [tropomyosin-related kinase (Trk)A, TrkB, TrkC and p75NTR] in AD and AD models. In addition, we focus on the interaction with neuropathological hallmarks Tau/neurofibrillary tangle and amyloid-β (Abeta)/amyloid plaque pathology and their influence on axonal transport processes in order to unify AD-specific cholinergic degeneration and Tau and Abeta misfolding through NTF pathophysiology.  相似文献   

6.
A selective regime favoring a streamlining of body contoursand surfaces is proposed as having been instrumental in drivingthe morphological and functional transformations of an unfeatheredreptilian integument into a feather-bearing avian one. Thishypothesis is consistent with a new, structurally and functionallycoherent analysis of the microanatomy of the avian feather-bearingintegument as a complex, integrated organ system that includesan intricate, hydraulic skeleto-muscular apparatus of the feathers,a dermo-subcutaneous muscle system of the integument, and asubcutaneous hydraulic skeletal system formed by fat bodies.Key elements of the evidence supporting the new hypothesis are(1) the presence of depressor feather muscles that are not neededas antagonists for the erector feather muscles, but can counteractexternal forces, such as air currents; (2) the fact that thehighly intricate feather-bearing integument represents a machineryto move feathers or to stabilize them against external forces;(3) the crucial role of the coat of feathers in streamliningthe body contours and surfaces of birds; (4) the aerodynamicrole of feathers as pressure and turbulence sensors and as controllabletemporary turbulators; and (5) the critical role that a streamlinedbody plays in avian flight and is likely to have played in theevolutionary transformations from ecologically and locomotorilyversatile quadrupedal reptiles to volant bipedal birds withoutpassing through parachuting or gliding stages. These transformationsare likely to have occurred more than once. The ancestral birdswere probably small, arboreal, hopping, and using flap-bounding,or intermittent bounding, flight.  相似文献   

7.
Neuropeptide Y (NPY) is a 36-amino acid peptide which exerts several regulatory actions within peripheral and central nervous systems. Among NPY actions preclinical and clinical data have suggested that the anxiolytic and antidepressant actions of NPY may be related to its antagonist action on the hypothalamic-pituitary-adrenal (HPA) axis. The neurotrophins brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are proteins involved in the growth, survival and function of neurons. In addition to this, a possible role of neurotrophins, particularly BDNF, in HPA axis hyperactivation has been proposed. To characterize the effect of NPY on the production of neurotrophins in the hypothalamus we exposed young adult rats to NPY intraperitoneal administration for three consecutive days and then evaluated BDNF and NGF synthesis in this brain region. We found that NPY treatment decreased BDNF and increased NGF production in the hypothalamus. Given the role of neurotrophins in the hypothalamus, these findings, although preliminary, provide evidence for a role of NPY as inhibitor of HPA axis and support the idea that NPY might be involved in pathologies characterized by HPA axis dysfunctions.  相似文献   

8.
The pentose phosphate cycle is considered as a major source of NADPH and pentose needed for nucleic acid biosynthesis. 6-Phosphogluconate dehydrogenase (6PGD), an enzyme participating in this cycle, catalyzes the oxidative decarboxylation of 6PGD to ribulose 5-phosphate with the subsequent release of CO2 and the reduction of NADP. We have determined the amino acid sequence of 6PGD of Bactrocera oleae and constructed a three-dimensional model based on the homologous known sheep structure. In a comparative study of 6PGD sequences from numerous species, all the conserved and variable regions of the enzyme were analyzed and the regions of functional importance were localized, in an attempt promoted also by the direct involvement of the enzyme in various human diseases. Thus, analysis of amino acid variability of 37 6PGD sequences revealed that all regions important for the catalytic activity, such as those forming the substrate and coenzyme binding sites, are highly conserved in all species examined. Moreover, several amino acid residues responsible for substrate and coenzyme specificity were also found to be identical in all species examined. The higher percentage of protein divergence is observed at two regions that accumulate mutations, located at the distant parts of the two domains of the enzyme with respect to their interface. These peripheral regions of nonfunctional importance are highly variable and are predicted as antigenic, thus reflecting possible regions for antibody recognition. Furthermore, locating the differences between diptera 6PGD sequences on the three-dimensional model suggests probable positions of different amino acid residues appearing at B. oleae fast, intermediate, and slow allozymic variants. Abbreviations used: 6Pgd, 6-Phosphogluconate dehydrogenase gene; 6PGD, 6-Phosphogluconate dehydrogenase enzyme; NADPH, nicotinamide adenine dinucleotide phosphate; ADP, adenine dinucleotide phosphate; TNBS, 2,4,6 trinitrobenzensulfonic acid.  相似文献   

9.
The chaperonins, GroEL and GroES, are present ubiquitously and provide a paradigm in the understanding of assisted protein folding. Due to its essentiality of function, GroEL exhibits high sequence conservation across species. Complete genome sequencing has shown the occurrence of duplicate or multiple copies of groEL genes in bacteria such as Mycobacterium tuberculosis and Corynebacterium glutamicum. Monophyly of each bacterial clade in the phylogenetic tree generated for the GroEL protein suggests a lineage-specific duplication. The duplicated groEL gene in Actinobacteria is not accompanied by the operonic groES despite the presence of upstream regulatory elements. Our analysis suggests that in these bacteria the duplicated groEL genes have undergone rapid evolution and divergence to function in a GroES-independent manner. Evaluation of multiple sequence alignment demonstrates that the duplicated genes have acquired mutations at functionally significant positions including those involved in substrate binding, ATP binding, and GroES binding and those involved in inter-ring and intra-ring interactions. We propose that the duplicate groEL genes in different bacterial clades have evolved independently to meet specific requirements of each clade. We also propose that the groEL gene, although essential and conserved, accumulates nonconservative substitutions to exhibit structural and functional variations. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Debashish Bhattacharya]  相似文献   

10.
ABSTRACT

Recent advances in genomic sequencing of multiple organisms have fostered significant advances in our understanding of the evolution of the sex chromosomes. The integration of this newly available sequence information with functional data has facilitated a considerable refinement of our conceptual framework of the forces driving this evolution. Here we address multiple functional constraints that were encountered in the evolution of the X chromosome and the impact that this evolutionary history has had on its modern behavior.  相似文献   

11.
12.
13.
Panic disorder is a major cause of medical attention with substantial social and health service cost. Based on pharmacological studies, research on its etiopathogenesis has been focused on the possible dysfunction of specific neurotransmitter systems. However, recent work has related the genes involved in development, synaptic plasticity and synaptic remodeling to anxiety disorders. This implies that learning processes and changes in perception, interpretation and behavioral responses to environmental stimuli are essential for development of complex anxiety responses secondary to the building of specific brain neural circuits and to adult plasticity. The focus of this review is on progress achieved in identifying genes that confer increased risk for panic disorder through genetic epidemiology and the use of genetically modified mouse models. The integration of human and animal studies targeting behavioral, systems-level, cellular and molecular levels will most probably help identify new molecules with potential impact on the pathogenetic aspects of the disease.  相似文献   

14.
SYNOPSIS. The long life spans of birds relative to those ofmammals are intriguing to biogerontologists, particularly inlight of birds' high body temperatures, high blood glucose levels,and high metabolic rates—all of which should theoreticallyincrease their biochemical liability for rapid aging. The comparativelongevity of birds and other flying homeotherms is consistentwith evolutionary senescence theory, which posits that specieswith low mortality rates from predation or accident will bereleased from selection for rapid maturity and early reproduction,and will exhibit retarded aging. Comparative analyses of avianlife history parameters to date, although not as extensive asthose for mammals, broadly support an association between lowmortality rates, slow reproduction, and long lifespan. The diversityof bird life histories suggests the importance of developinga diversity of avian models for studies of aging mechanisms,both proximate and ultimate, and for using wild as well as domesticrepresentatives. Birds studied in the laboratory thus far showmany of the same manifestations of aging as mammals, includinghumans, and many ornithologists are beginning to document actuarialevidence consistent with aging in their study populations. Weencourage greater communication and collaboration among comparativegerontologists and ornithologists, in the hope that the studyof aging in birds will lead to an integrated understanding ofphysiological aging processes well grounded in an evolutionaryparadigm.  相似文献   

15.
Neurons in the nascent dorsal root ganglia are born and differentiate in a complex cellular milieu composed of postmitotic neurons, and mitotically active glial and neural progenitor cells. Neurotrophic factors such as NT-3 are critically important for promoting the survival of postmitotic neurons in the DRG. However, the factors that regulate earlier events in the development of the DRG such as the mitogenesis of DRG progenitor cells and the differentiation of neurons are less defined. Here we demonstrate that both NT-3 and CNTF induce distinct dose-dependent responses on cells in the immature DRG: at low concentrations, they induce the proliferation of progenitor cells while at higher concentrations they promote neuronal differentiation. Furthermore, the mitogenic response is indirect; that is, NT-3 and CNTF first bind to nascent neurons in the DRG--which then stimulates those neurons to release mitogenic factors including neuregulin. Blockade of this endogenous neuregulin activity completely blocks the CNTF-induced proliferation and reduces about half of the NT-3-mediated proliferation. Thus, the genesis and differentiation of neurons and glia in the DRG are dependent upon reciprocal interactions among nascent neurons, glia, and mitotically active progenitor cells.  相似文献   

16.
The Toll-like receptor (TLR) gene family consists of type 1 transmembrane receptors, which play essential roles in both innate immunity and adaptive immune response by ligand recognition and signal transduction. Using all available vertebrate TLR protein sequences, we inferred the phylogenetic tree and then characterized critical amino acid residues for functional divergence by detecting altered functional constraints after gene duplications. We found that the extracellular domain of TLR genes showed higher functional divergence than that of the cytoplasmic domain, particularly in the region between leucine-rich repeat (LRR) 10 and LRR 15 of TLR 4. Our finding supports the concept that sequence evolution in the extracellular domain may be responsible for the broad diversity of TLR ligand-binding affinity, providing a testable hypothesis for potential targets that could be verified by further experimentation.  相似文献   

17.
The duplication of genes and even complete genomes may be a prerequisite for major evolutionary transitions and the origin of evolutionary novelties. However, the evolutionary mechanisms of gene evolution and the origin of novel gene functions after gene duplication have been a subject of many debates. Recently, we compiled 26 groups of orthologous genes, which included one gene from human, mouse, and chicken, one or two genes from the tetraploid Xenopus and two genes from zebrafish. Comparative analysis and mapping data showed that these pairs of zebrafish genes were probably produced during a fish-specific genome duplication that occurred between 300 and 450 Mya, before the teleost radiation (Taylor et al. 2001). As discussed here, many of these retained duplicated genes code for DNA binding proteins. Different models have been developed to explain the retention of duplicated genes and in particular the subfunctionalization model of Force et al. (1999) could explain why so many developmental control genes have been retained. Other models are harder to reconcile with this particular set of duplicated genes. Most genes seem to have been subjected to strong purifying selection, keeping properties such as charge and polarity the same in both duplicates, although some evidence was found for positive Darwinian selection, in particular for Hox genes. However, since only the cumulative pattern of nucleotide substitutions can be studied, clear indications of positive Darwinian selection or neutrality may be hard to find for such anciently duplicated genes. Nevertheless, an increase in evolutionary rate in about half of the duplicated genes seems to suggest that either positive Darwinian selection has occurred or that functional constraints have been relaxed at one point in time during functional divergence. Received: 4 January 2001 / Accepted: 29 March 2001  相似文献   

18.
Lepidoptera (comprised of butterflies and moths) is one of the largest groups of insects, including more than 160,000 described species. Chemoreception plays important roles in the adaptation of these species to a wide range of niches, e.g., plant hosts, egg-laying sites, and mates. This study investigated the molecular evolution of the lepidopteran odorant (Or) and gustatory receptor (Gr) genes using recently identified genes from Bombyx mori, Danaus plexippus, Heliconius melpomene, Plutella xylostella, Heliothis virescens, Manduca sexta, Cydia pomonella, and Spodoptera littoralis. A limited number of cases of large lineage-specific gene expansion are observed (except in the P. xylostella lineage), possibly due to selection against tandem gene duplication. There has been strong purifying selection during the evolution of both lepidopteran odorant and gustatory genes, as shown by the low ω values estimated through CodeML analysis, ranging from 0.0093 to 0.3926. However, purifying selection has been relaxed on some amino acid sites in these receptors, leading to sequence divergence, which is a precursor of positive selection on these sequences. Signatures of positive selection were detected only in a few loci from the lineage-specific analysis. Estimation of gene gains and losses suggests that the common ancestor of the Lepidoptera had fewer Or genes compared to extant species and an even more reduced number of Gr genes, particularly within the bitter receptor clade. Multiple gene gains and a few gene losses occurred during the evolution of Lepidoptera. Gene family expansion may be associated with the adaptation of lepidopteran species to plant hosts, especially after angiosperm radiation. Phylogenetic analysis of the moth sex pheromone receptor genes suggested that chromosomal translocations have occurred several times. New sex pheromone receptors have arisen through tandem gene duplication. Positive selection was detected at some amino acid sites predicted to be in the extracellular and transmembrane regions of the newly duplicated genes, which might be associated with the evolution of the new pheromone receptors.  相似文献   

19.
20.
反硝化功能基因—— 检测反硝化菌种群结构的分子标记   总被引:8,自引:0,他引:8  
反硝化菌种类繁多, 且分属多个分类学上的不同种属, 故不能利用常规的16S rRNA测序方法对其进行研究。利用编码反硝化酶的功能基因作为分子标记, 可以有效研究环境样品中反硝化菌的种群结构、数量以及活性等。本文重点介绍了主要的反硝化功能基因以及常用的扩增引物, 分析了反硝化功能基因与16S rRNA系统发育之间的关系, 比较了nirS和nirK基因菌的群落分布特征, 对目前反硝化功能基因的研究和应用现状进行了综述, 讨论了研究中发现的新问题, 期望为研究复杂微生物的生态特征提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号