首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
alpha- and beta-Tubulin are encoded in vertebrate genomes by a family of approximately 6-7 functional genes whose polypeptide products differ in amino acid sequence. In the chicken, one beta-tubulin isotype (c beta 6) has previously been found to be expressed only in thrombocytes and erythroid cells, where it is assembled into a circumferential ring of marginal band microtubules. In light of its unique in vivo utilization and its divergent assembly properties in vitro, we used DNA transfection to test whether this isotype could be assembled in vivo into microtubules of divergent functions. Using an antibody specific to c beta 6, we have found that upon transfection this polypeptide is freely coassembled into an extensive array of interphase cytoplasmic microtubules and into astral and pole-to-chromosome or pole-to-pole microtubules during mitosis. Further, examination of developing chicken erythrocytes reveals that both beta-tubulins that are expressed in these cells (c beta 6 and c beta 3) are found as co-polymers of the two isoforms. These results, in conjunction with efforts that have localized various other beta-tubulin isotypes, demonstrate that to the resolution limit afforded by light microscopy in vivo microtubules in vertebrates are random copolymers of available isotypes. Although these findings are consistent with functional interchangeability of beta-tubulin isotypes, we have also found that in vivo microtubules enriched in c beta 3 polypeptides are more sensitive to cold depolymerization than those enriched in c beta 6. This differential quantitative utilization of the two endogenous isotypes documents that some in vivo functional differences between isotypes do exist.  相似文献   

2.
Vertebrate tubulin is encoded by a multigene family that produces distinct gene products, or isotypes, of both the alpha- and beta-tubulin subunits. The isotype sequences are conserved across species supporting the hypothesis that different isotypes subserve different functions. To date, however, most studies have demonstrated that tubulin isotypes are freely interchangeable and coassemble into all classes of microtubules. We now report that, in contrast to other isotypes, overexpression of a mouse class V beta-tubulin cDNA in mammalian cells produces a strong, dose-dependent disruption of microtubule organization, increased microtubule fragmentation, and a concomitant reduction in cellular microtubule polymer levels. These changes also disrupt mitotic spindle assembly and block cell proliferation. Consistent with diminished microtubule assembly, there is an increased tolerance for the microtubule stabilizing drug, paclitaxel, which is able to reverse many of the effects of class V beta-tubulin overexpression. Moreover, transfected cells selected in paclitaxel exhibit increased expression of class V beta-tubulin, indicating that this isotype is responsible for the drug resistance. The results show that class V beta-tubulin is functionally distinct from other tubulin isotypes and imparts unique properties on the microtubules into which it incorporates.  相似文献   

3.
Isolated microtubule proteins from the cold-adapted fish, Atlantic cod (Gadus morhua), assemble at temperatures between 8 and 30 degrees C, while avian and mammalian microtubules normally do not assemble at temperatures below 20 degrees C. Tubulin, the main component in microtubules, is expressed as many isotypes. Microtubules with different isotype composition have been shown to have different dynamic properties in vitro. Our hypothesis was that cold-tolerance of microtubules is caused by tubulin isotypes that differ in the primary sequence compared to mammalian tubulins. Here we show that transfection of human HepG2 cells with cod beta-tubulin induced cold-adaptation of the endogenous microtubules. Incorporation of one single tubulin isotype can induce cold-tolerance to cold-intolerant microtubules. Three cod beta-tubulin isotypes were tested and two of these (beta1 and beta2) transferred cold-tolerance to HepG2 microtubules, thus not all cod beta-tubulins were able to confer cold-stability.  相似文献   

4.
The availability of isotype-specific antisera for beta-tubulin, coupled with genetic and biochemical analysis, has allowed the determination of beta-tubulin isotype expression and distribution in Chinese hamster ovary (CHO) cells. Using genetic manipulations involving selection for colcemid resistance followed by reversion and reselection for drug resistance, we have succeeded in isolating cell lines that exhibit three major and one minor beta-tubulin spots by two-dimensional gel electrophoresis. In concert with isotype-specific antibodies, analysis of these mutants demonstrates that CHO cells express two copies of isotype I, at least one copy of isotype IV, and very small amounts of isotype V. All three isotypes assemble into both cytoplasmic and spindle microtubules and are similar in their responses to cold, colcemid, and calcium-induced depolymerization. They have comparable turnover rates and are equally sensitive to depression of synthesis upon colchicine treatment. These results suggest that beta-tubulin isotypes are used interchangeably to assemble microtubule structures in CHO cells. However, of 18 colcemid-resistant mutants with a demonstrable alteration in beta-tubulin, all were found to have the alteration in isotype I, thus leaving open the possibility that subtle differences in isotype properties may exist.  相似文献   

5.
To assay the functional significance of the multiple but closely related alpha-tubulin polypeptides that are expressed in mammalian cells, we generated three specific immune sera, each of which uniquely recognizes a distinct alpha-tubulin isotype. All three isotypes are expressed in a tissue-restricted manner: one (M alpha 3/7) only in mature testis, one (M alpha 4) mainly in muscle and brain, and the third (M alpha 6) in several tissues at a very low level. A fourth specific antiserum was also generated that distinguishes between the tyrosinated and nontyrosinated form of a single alpha-tubulin isotype. Because individual tubulin isotypes cannot be purified biochemically, these sera were raised using cloned fusion proteins purified from host Escherichia coli cells. To suppress the immune response to shared epitopes, animals were first rendered tolerant to fusion proteins encoding all but one of the known mammalian alpha-tubulin isotypes. Subsequent challenge with the remaining fusion protein then resulted in the elicitation of an immune response to unique epitopes. Three criteria were used to establish the specificity of the resulting sera: (a) their ability to discriminate among cloned fusion proteins representing all the known mammalian alpha-tubulin isotypes; (b) their ability to uniquely detect alpha-tubulin in whole extracts of tissues; and (c) their capacity to stain microtubules in fixed preparations of cells transfected with sequences encoding the corresponding isotype. The transfection experiments served to demonstrate (a) the coassembly of M alpha 3/7, M alpha 4, and M alpha 6 into both interphase and spindle microtubules in HeLa cells and NIH 3T3 cells, and (b) that the M alpha 4 isotype, which is unique among mammalian alpha-tubulins in that it lacks an encoded carboxy-terminal tyrosine residue, behaves like other alpha-tubulin isotypes with respect to the cycle of tyrosination/detyrosination that occurs in most cultured cells.  相似文献   

6.
7.
The neuronal cells of vertebrates express two beta-tubulin isotypes, called Class II and Class III, that are neuronal specific. In order to determine the distribution of the minor Class III isotype, site-directed antibodies were raised to synthetic peptides representing the carboxyl terminal, isotype-defining domains of the tubulins. These antibodies were applied to PC12 cells at various stages of differentiation. The Class III isotype was found to be expressed in undifferentiated PC12 cells as well as in cells at every stage of differentiation. The concentration of the Class III isotype, relative to the total beta-tubulin complement, did not change significantly. Indirect double immunofluorescence microscopy demonstrated that the Class III isotype was found in the soma and the neurites of differentiated PC12 cells; this spatial pattern of Class III expression paralleled the total beta-tubulin pattern. Although the anti-Class III antiserum could stain in vitro assembled neuronal microtubules in a filamentous pattern, a close examination of the Class III staining pattern in flattened PC12 cells revealed that this isotype was not incorporated into the nonaxoplasmic array of microtubules. Rather, the Class III isotype was localized in a nonfilamentous, granular pattern that was not readily extracted with nonionic detergent. Cells treated with taxol and then flattened and stained showed that the Class III isotype could be induced to assemble into microtubule bundles by taxol. Thus, the minor neuronal beta-tubulin isotype appears to be spatially specialized in its pattern of expression.  相似文献   

8.
Antimitotic drugs are chemotherapeutic agents that bind tubulin and microtubules. Resistance to these drugs is a major clinical problem. One hypothesis is that the cellular composition of tubulin isotypes may predict the sensitivity of a tumor to antimitotics. Reliable and sensitive methods for measuring tubulin isotype levels in cells and tissues are needed to address this hypothesis. Quantitative measurements of tubulin isotypes have frequently relied upon inferring protein amounts from mRNA levels. To determine whether this approach is justified, protein and mRNA levels of beta-tubulin isotypes from 12 human cancer cell lines were measured. This work focused on only beta-tubulin isotypes because we had readily available monoclonal antibodies for quantitative immunoblots. The percentage of beta-tubulin isotype classes I, II, III, and IVa + IVb mRNA and protein were compared. For beta-tubulin class I that comprises >50% of the beta-tubulin protein in 10 of the 12 cell lines, there was good agreement between mRNA and protein percentages. Agreement between mRNA and protein was also found for beta-tubulin class III. For beta-tubulin classes IVa + IVb, we observed higher protein levels compared to mRNA levels.Beta-tubulin class II protein was found in only four cell lines and in very low abundance. We conclude that quantitative Western blotting is a reliable method for measuring tubulin isotype levels in human cancer cell lines. Inferring protein amounts from mRNA levels should be done with caution, since the correspondence is not one-to-one for all tubulin isotypes.  相似文献   

9.
beta-Tubulin is encoded in the genomes of higher animals by a small multigene family comprising approximately seven functional genes. These genes produce a family of closely related, but distinct polypeptide isotypes that are distinguished principally by sequences within the approximately 15 carboxy-terminal amino acid residues. By immunizing rabbits with chemically synthesized peptides corresponding to these variable domain sequences, we have now prepared polyclonal antibodies specific for each of six distinct isotypes. Specificity of each antiserum has been demonstrated unambiguously by antibody binding to bacterially produced, cloned proteins representing each isotype and by the inhibition of such binding by preincubation of each antiserum only with the immunizing peptide and not with heterologous peptides. Protein blotting of known amounts of cloned, isotypically pure polypeptides has permitted accurate quantitative measurement of the amount of each beta-tubulin isotype present in the soluble and polymer forms in various cells, but has not revealed a bias for preferential assembly of any isotype. Localization of each isotype in three different cell types using indirect immunofluorescence has demonstrated that in vivo each class of microtubules distinguishable by light microscopy is assembled as copolymers of all isotypes expressed in a single cell.  相似文献   

10.
beta-Tubulin is encoded in vertebrate genomes by a family of six to seven functional genes that produce six different polypeptide isotypes. We now document that although rat PC-12 cells express five of these isotypes, only two (classes II and III) accumulate significantly as a consequence of nerve growth factor-stimulated neurite outgrowth. In contrast to previous efforts that have failed to detect in vivo distinctions among different beta-tubulin isotypes, we demonstrate using immunoblotting with isotype-specific antibodies that three beta-tubulin polypeptides (classes I, II, and IV) are used preferentially for assembly of neurite microtubules (with approximately 70% of types I and II assembled but only approximately 50% of type III in polymer). Immunofluorescence localization shows that an additional isotype (V) is partially excluded from neurites. Distinctions in in vivo localization of the neuron-specific, class III isotype have also been directly observed using immunofluorescence and immunogold electron microscopy. The sum of these efforts documents that some in vivo functional differences between tubulin isotypes do exist.  相似文献   

11.
In the accompanying paper (Gu, W., S. A. Lewis, and N. J. Cowan. 1988. J. Cell Biol. 106: 2011-2022), we report the generation of three antisera, each of which uniquely recognizes a different mammalian alpha-tubulin isotype, plus a fourth antibody that distinguishes between microtubules containing the tyrosinated and nontyrosinated form of the only known mammalian alpha-tubulin gene product that lacks an encoded carboxy-terminal tyrosine residue. These sera, together with five sera we raised that distinguish among the known mammalian beta-tubulin isotypes, have been used to study patterns of tubulin isotype-specific expression in muscle and testis, two tissues in which characteristic developmental changes are accompanied by dramatic rearrangements in microtubule structures. As in the case of cells in culture, there is no evidence to suggest that there is subcellular sorting of different tubulin isotypes among different kinds of microtubule, even in a cell type (the developing spermatid) that simultaneously contains such functionally distinct structures as the manchette and the flagellum. On the other hand, the patterns of expression of the various tubulin isotypes show marked and distinctive differences in different cell types and, in at least one case, evidence is presented for regulation at the translational or posttranslational level. The significance of these observations is discussed in terms of the existence of the mammalian alpha- and beta-tubulin multigene families.  相似文献   

12.
Jost W  Baur A  Nick P  Reski R  Gorr G 《Gene》2004,340(1):151-160
Tubulins, as the major structural component of microtubules (MT), are highly conserved throughout the entire eukaryotic kingdom. They consist of alpha/beta heterodimers. Both monomers, at least in multicellular organisms, are encoded by gene families. In higher plants up to eight beta-tubulin isotypes, mostly differing in their very C-termini, have been described. These variable beta-tubulin C-termini have been discussed in the context of functional microtubule diversity. However, in plants, in contrast to vertebrates, functional isotype specificity remains yet to be demonstrated. Unlike higher plants, unicellular green algae in general do not exhibit isotypic variations. The moss Physcomitrella patens is a phylogenetic intermediate between higher plants and green algae. We isolated six beta-tubulin genes from Physcomitrella, named PpTub1 to 6. We show that the exon/intron structure, with the exception of one additional intron in PpTub6, is identical with that of higher plants, and that some members of the family are differentially expressed. Moreover, we find that all Physcomitrella isotypes are highly conserved and, most strikingly, are almost identical within their C-terminal amino acids (aa). This evolutionary ancient and large beta-tubulin gene family without significant isotypic sequence variation points to a role of differential regulation in the evolution of plant tubulin isotypes.  相似文献   

13.
By using two-dimensional gel electrophoresis and immunoblotting, we have analyzed the expression of beta-tubulin isotypes in the higher plant, carrot. We report a complex expression of beta-tubulins that is dependent on the developmental stage of the tissues analyzed. Consequently, each tissue examined can be identified by its unique composition of beta-tubulins. In total, there are six electrophoretically separable beta-tubulins. In no tissue, however, is there less than two or more than five beta-tubulins. Within this framework we have detected a beta-tubulin specific to seedling tissue beta 6, and a beta-tubulin, beta 5, that is found only in the vegetative tissues of the mature plant. Traced from stem to midrib to leaf lamina, the beta 5 isotype becomes progressively dominant relative to beta 1. Another beta-tubulin isotype, beta 4, appears in marked abundance in immature and mature stamens. In isolated mature pollen the beta 4-tubulin overwhelmingly predominates the ubiquitously expressed beta 2-tubulin isotype. The remaining beta-tubulin isotypes also have specific expression programs with beta 1 present in all tissues except pollen and beta 3 absent only from pollen and leafy tissues.  相似文献   

14.
15.
16.
Tubulin has generally been considered to be a cytosolic protein whose only function is to form microtubules. This assumption is supported by a great deal of evidence derived from immunohistochemical studies using antibodies directed against whole tubulin or its component polypeptides alpha- and beta-tubulin. We have re-examined the intracellular distribution of tubulin using monoclonal antibodies specific for the betaI, betaII, betaIII, and betaIV isotypes of beta-tubulin. Our test system is the cultured rat kidney mesangial cell. We have found that betaIII is absent from these cells and that beta1 and betaIV are present in microtubules throughout the cytosol. In contrast, betaII is present largely in the nuclei. Immunoblotting of purified nuclear extracts shows that the betaII-reactive antigen co-migrates with beta-tubulin. Extraction of the cytosol and chromatin suggests that betaII is concentrated in the nucleoli and also in a reticulated network in the rest of the nucleoplasm. An antibody to tyrosinated alpha-tubulin shows that alpha is also present in the nucleoli. Treatment of the cells with fluorescent colchicine shows an accumulation of colchicine in the nucleoli. Finally, fluorescently labeled alphabetaII-tubulin dimers, when microinjected into the cells, enter the nuclei and are concentrated in the nucleoli. These results suggest that the betaII isotype of tubulin is present as an alphabetaII dimer in the nuclei of cultured mesangial cells and suggest the possibility that different tubulin isotypes may have specific functions within the cell.  相似文献   

17.
Tubulin, the constitutive protein of microtubules, is a heterodimeric protein with an alpha and beta subunit, encoded in vertebrates by six and seven different genes, respectively. Each tubulin isotype can be identified by its divergent C-terminal sequence. Nevertheless, two groups of beta-tubulin isotypes can be distinguished by sequence alignment; one includes betaI-, betaII-, betaIVa-, and betaIVb-tubulin, and the other includes betaIII-, betaV-, and betaVI-tubulin. betaIII-tubulin overexpression has been associated with microtubule destabilization and resistance to Taxol. Recent data indicate that mouse betaV-tubulin overexpression in CHO cells results in profound microtubule disorganization and dependence of cells on Taxol for growth. Mouse and human betaV-tubulin sequences display several differences, such as their respective extreme C-terminus, suggesting that they may have different effects on microtubule stability and different affinities for drugs. When high-resolution isoelectric focusing, in-gel CNBr cleavage, and mass spectrometry were combined, we detected for the first time the betaV-tubulin protein in human cell lines and found that it was highly expressed in Hey, an epithelial ovarian cancer cell line. Our data confirm that human and rodent betaV-tubulins are distinct and indicate that, regardless of species, betaIII- and betaV-tubulin may be expressed in a complementary pattern at the protein level. Therefore, both betaIII- and betaV-tubulin expression levels should be systematically determined to assess the role of differential tubulin isotype expression in the response of tumors to drugs targeting microtubules.  相似文献   

18.
In chicken, beta-tubulin is encoded by a family of seven genes. We have now isolated and sequenced overlapping cDNA clones corresponding to gene c beta 7 (previously designated c beta 4'), the only chicken beta-tubulin not previously characterized. The inferred amino acid sequence of c beta 7 tubulin is identical with the class I beta-tubulin isotype found in human, mouse and rat. Moreover, c beta 7 is highly expressed in almost all tissue and cell types in chicken, a pattern similar to those of the genes for class I beta-tubulin isotypes in other vertebrates. Comparison of the complete family of chicken beta-tubulin gene sequences reveals that the heterogeneity of beta-tubulin polypeptides encoded in a higher eukaryote is confined to six distinct beta-tubulin isotypes. Five of these are members of evolutionarily conserved isotypic classes (I to V), whereas the sixth represents a divergent erythroid-specific tubulin whose sequence has not been conserved.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号