首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The R3-R14 neurons of the marine mollusc Aplysia are neuroendocrine cells that express a gene encoding peptides I, II and histidine-rich basic peptide (HRBP), a myoactive peptide that excites Aplysia heart and enhances gut motility in vitro. Peptide II has been chemically characterized (35), but the complete primary structures of peptide I and HRBP have not been established by amino acid sequence analysis. HRBP, peptide I, and the prohormone (proHRBP) were therefore purified from acid extracts of Aplysia californica neural tissue using sequential gel filtration and reverse-phase high-performance liquid chromatography and chemically characterized. Amino acid sequence analysis demonstrated that HRBP was a 43-residue peptide whose sequence was: less than Glu-Val-Ala-Gln-Met-His-Val-Trp-Arg-Ala-Val-Asn-His-Asp-Arg-Asn-His-Gly- Thr-Gly - Ser-Gly-Arg-His-Gly-Arg-Phe-Leu-Ile-Arg-Asn-Arg-Tyr-Arg-Tyr-Gly-Gly-Gly- His-Leu - Ser-Asp-Ala-COOH. Compositional and sequence analyses of peptide I and proHRBP demonstrated that peptide I was a 26-residue peptide with the following sequence: NH2-Glu-Glu-Val-Phe-Asp-Asp-Thr-Asp-Val-Gly-Asp-Glu-Leu-Thr-Asn-Ala- Leu-Glu-Ser-Val-Leu-Thr-Asp-Phe-Lys-Asp-COOH. These results demonstrated that the pro-HRBP sequence predicted by nucleotide sequence analysis of a cDNA clone (24) was in fact synthesized in R3-R14 neurons. Hydrophilicity and hydrophobicity profiles of preproHRBP, combined with charge distribution profiles and predictive secondary structural analysis, showed that cleavage at dibasic sequences was strongly associated with peaks of hydrophilicity in alpha-helical regions of the preprohormone.  相似文献   

2.
1. Relationships between intracellular amino acid concentrations and uptake rates and their utilization in synthesis of cell-specific peptides in neurons R3-R14 in the Aplysia parietovisceral ganglion are explored. 2. The uptake rates and intracellular concentrations of most amino acids are positively correlated and inversely related to their degree of incorporation into the peptides. 3. The bulk cellular pool of arginine is probably utilized in the synthesis of R3-R14 peptides, but much of the glycine taken up appears not to be readily available for protein synthesis. 4. There are rapidly and slowly turning over pools of the peptides, and portions of the peptides stay in the cell bodies for days.  相似文献   

3.
Pedal peptide (Pep) is a modulatory neuropeptide that is predominantly synthesized in a group of neurons on the dorsal surfaces of the pedal ganglia of Aplysia. Following the determination that Pep is the major peptide selectively present in these neurons in situ, primary cell culture of single Pep-neurons was used to study the release of this neuropeptide. Individual Pep-neurons were grown in culture where they extended many branched neurites with large varicosities. Immunocytology revealed that these newly grown varicosities were intensely Pep immunoreactive. Cultured Pep-neurons, grown in a medium containing radiolabeled methionine, synthesized labeled Pep and transported it into their regenerated neurites. Finally, these neurons released radiolabeled Pep in a calcium- and stimulation-dependent fashion. These results, taken together with previous findings, strongly support the proposition that Pep is a transmitter in Aplysia.  相似文献   

4.
Proteolytic processing of a peptide precursor in Aplysia neuron R14   总被引:1,自引:0,他引:1  
The large neurons of the mollusc Aplysia are useful for studying the biogenesis of neuropeptides in single cells. Neuron R14 in the abdominal ganglion synthesizes large quantities of a 10-kDa neuropeptide precursor. The amino acid sequence of this precursor has been defined by analysis of the nucleotide sequence of a cDNA clone. We labeled proteins in vivo by microinjection of radioactive amino acids into individual R14 neurons. The labeled peptides were fractionated by high performance liquid chromatography and subjected to Edman degradation, thus enabling us to determine post-translational processing sites. Cleavage of the signal sequence was observed and at two internal sites. Cleavage at these internal sites occurs at basic amino acids and results in three products, a 2.9-, a 4.9-, and a 1.4-kDa peptide. These studies of protein processing serve as a basis for further investigations of the biogenesis and physiological activities of the neuropeptides.  相似文献   

5.
The axonal transport of 3H-amino acids was studied in the axons of identified neurons R3–R14 in the parietovisceral ganglion (PVG) of the mollusc Aplysia. The PVG was incubated (3–24 hr) in media containing physiological concentrations of single 3H-amino acids while the isolated nerve was superfused with plain or chemically altered media. The nerve was then sliced into sequential segments for biochemical analyses or fixed for autoradiography. 3H-glycine was transported at 70 mm/day in 6X greater quantities than other amino acids which were transported at <40 mm/day. In the 3H-glycine experiments, >80% of the label transported into the nerve remained as free glycine, comigrating with glycine in thin-layer chromatographs. In autoradiographs of sections 4 mm from the ganglion-nerve barrier, >50% of the silver grains were over R3–R14 axons which occupy <10% of the nerve cross-sectional area. EM autoradiographs confirmed that grains were within R3–R14 and not in surrounding glia. The selective transport of glycine was inhibited by Hg2+, by vinblastine and Nocodazole, and by low Ca2+ media. Autoradiographs of vinblastine-treated nerves showed a drastic reduction in label over R3–R14 and other axons. Label was also transported retrogradely; this transport rate was similar to the orthograde rate, but 5–10 times less label moved retrogradely. Autoradiographs showed that the retrograde label was localized to R3–R14 axons. This report clearly demonstrates the rapid, selective, and bidirectional transport of a free amino acid and provides further evidence that glycine may be used as a neurochemical messenger by neurons R3–R14.  相似文献   

6.
The axonal transport of 3H-amino acids was studied in the axons of identified neurons R3--R14 in the parietovisceral ganglion (PVG) of the mollusc Aplysia. The PVG was incubated (3--24 hr) in media containing physiological concentrations of single 3H-amino acids while the isolated nerve was superfused with plain or chemically altered media. The nerve was then sliced into sequential segments for biochemical analyses or fixed for autoradiography. 3H-glucine was transported at 70 mm/day in 6X greater quantities than other amino acids which were transported at less than 40 mm/day. In the 3H-glycine experiments, greater than 80% of the label transported into the nerve remained as free glycine, comigrating with glycine in thin-layer chromatographs. In autoradiographs of sections 4 mm from the ganglion-nerve barrier, greater than 50% of the silver grains were over R3--R14 axons which occupy less than 10% of the nerve cross-sectional area. EM autoradiographs confirmed that grains were within R3--R14 and not in surrounding glia. The selective transport of glycine was inhibited by Hg2+, by vinblastine and Nocodazole, and by low Ca2+ media. Autoradiographs of vinblastine-treated nerves showed a drastic reduction in label over R3--R14 and other axons. Label was also transported retrogradely; this transport rate was similar to the orthograde rate, but 5--10 times less label moved retrogradely. Autoradiographs showed that the retrograde label was localized to R3--R14 axons. This report clearly demonstrates the rapid, selective, and bidirectional transport of a free amino acid and provides further evidence that glycine may be used as a neurochemical messenter by neurons R3--R14.  相似文献   

7.
Alpha-bag cell peptide [α-BCP (Ala-Pro-Arg-Leu-Arg-Phe-Tyr-Ser-Leu)] is a neurotransmitter that mediates bag cell-induced inhibition of left-upper-quadrant (LUQ) neurons L2, L3, L4, and L6 in the abdominal ganglion of Aplysia. Our recent biochemical studies have shown that α-BCP[1–9] is cleaved into α-BCP[1–2], [3–9], [1–5], [6–9], and [7–9] by a combination of three distinct peptidase activities located within the extracellular spaces of the CNS: A diaminopeptidase-IV (DAP-IV)-like enzyme cleaves α-BCP[1–9] at the 2–3 peptide bond; a neutral metalloendopeptidase (NEP)-like enzyme cleaves either α-BCP[1–9] or α-BCP[3–9] at the 5–6 bond; an aminopeptidase M-II (APM-II)-like enzyme cleaves α-BCP[6–9] at the 6–7 bond, but cleaves neither α-BCP[1–9], nor the other ganglionic peptidase products. To further understand the manner in which α-BCP is inactivated after release, that is loses its electro-physiological activity, we studied its structure-activity relationship by recording intracellularly from LUQ neurons in isolated abdominal ganglia that were arterially perfused with peptides dissolved in artificial sea water. The effects of α-BCP[1–9] and 15 of its fragments ([1–8], [1–7], [1–6], [1–5], [2–9], [3–9], [3–8], [6–9], [7–9], [8–9], [6–7], [6–8], [1–2], Phe, Tyr) indicated that the sequence Phe6-Tyr7 was both necessary and sufficient to produce LUQ inhibitory activity. The combined results of our electrophysiological and biochemical studies strongly suggest that α-BCP[1–9] is inactivated by the serial actions of the NEP-like and APM-II-like peptidases; that is, the NEP-like enzyme yields an electro-physiologically active product, α-BCP[6–9], that is cleaved by the APM-II-like enzyme to yield inactive α-BCP[7–9]. Furthermore, because α-BCP[6–9] is more active than α-BCP[1–9], cleavage by the NEP-like enzyme potentiates α-BCP's activity. © 1992 John Wiley & Sons, Inc.  相似文献   

8.
The bag cells of the marine mollusk Aplysia express a gene encoding a 271-residue egg-laying hormone (ELH) precursor that is processed into at least nine peptide products. Four of the peptides have been identified in bag cell releasates and are known to act as nonsynaptic neurotransmitters in the abdominal ganglion. The isolation, primary structure, and proposed biological activity of a fifth peptide product (delta-bag cell peptide (delta-BCP)) from the ELH precursor are described. delta-BCP was established to be a 39-residue peptide: NH2-Asp-Gln-Asp-Glu-Gly-Asn-Phe-Arg-Arg-Phe-Pro-Thr-Asn-Ala-Val-Ser-Met- Ser-Ala-Asp- Glu-Asn-Ser-Pro-Phe-Asp-Leu-Ser-Asn-Glu-Asp-Gly-Ala-Val-Tyr-Gln-Arg- Asp-Leu-COOH. This sequence corresponds to residues 81-119 of the ELH prohormone and shares sequence identity with atrial gland peptides A and B. Significantly, synthetic delta-BCP stimulated Ca2+ uptake into mitochondria of secretory cells in the albumin gland in vitro, suggesting that the peptide regulates the cellular release of perivitelline fluid by the gland. Similar results were obtained with purified peptide A and a shorter version of delta-BCP (delta-BCP-(14-33)). These results indicate that delta-BCP belongs to a family of structurally related peptides with similar pharmacological activities that center at a conserved region of sequence corresponding to delta-BCP-(14-33).  相似文献   

9.
Alpha-bag cell peptide [alpha-BCP (Ala-Pro-Arg-Leu-Arg-Phe-Tyr-Ser-Leu)] is a neurotransmitter that mediates bag cell-induced inhibition of left-upper-quadrant (LUQ) neurons L2, L3, L4, and L6 in the abdominal ganglion of Aplysia. Our recent biochemical studies have shown that alpha-BCP[1-9] is cleaved into alpha-BCP[1-2], [3-9], [1-5], [6-9], and [7-9] by a combination of three distinct peptidase activities located within the extracellular spaces of the CNS: A diaminopeptidase-IV (DAP-IV)-like enzyme cleaves alpha-BCP[1-9] at the 2-3 peptide bond; a neutral metalloendopeptidase (NEP)-like enzyme cleaves either alpha-BCP[1-9] or alpha-BCP[3-9] at the 5-6 bond; an aminopeptidase M-II (APM-II)-like enzyme cleaves alpha-BCP[6-9] at the 6-7 bond, but cleaves neither alpha-BCP[1-9], nor the other ganglionic peptidase products. To further understand the manner in which alpha-BCP is inactivated after release, that is loses its electrophysiological activity, we studied its structure-activity relationship by recording intracellularly from LUQ neurons in isolated abdominal ganglia that were arterially perfused with peptides dissolved in artificial sea water. The effects of alpha-BCP[1-9] and 15 of its fragments ([1-8], [1-7], [1-6], [1-5], [2-9], [3-9], [3-8], [6-9], [7-9], [8-9], [6-7], [6-8], [1-2], Phe, Tyr) indicated that the sequence Phe6-Tyr7 was both necessary and sufficient to produce LUQ inhibitory activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Vesely DL 《IUBMB life》2002,53(3):153-159
Atrial natriuretic peptides consist of a family of peptide hormones that are synthesized by three separate genes and then stored as three different prohormones (i.e., 126-amino acid [a.a.]) atrial natriuretic peptide (ANP), 108-a.a. brain natriuretic peptide (BNP), and 126-aa. C-natriuretic peptide (CNP) prohormones. The gene encoding for the synthesis of the atrial natriuretic peptide prohormone (proANP) consists of three exons and two introns. Exon 1 encodes the signal peptide and the first 16 aa. of the ANP prohormone. These 16 a.a. form the N-terminus of a peptide hormone named long-acting natriuretic hormone (LANH). A valine-to-methionine substitution in LANH results in a 2-fold increased incidence of strokes in humans. Exon 2 of the proANP gene encodes for three peptide hormones, i.e., vessel dilator, kaliuretic hormone, and ANP. Each of the proANP gene products have vasodilatory, diuretic, natriuretic, and/or kaliuretic properties. Stretch, glucocorticoids, thyroid hormone(s), mineralocorticoids, and calcium enhance proANP gene expression. Enhanced proANP gene expression is found in congestive heart failure, hypertension, and cirrhosis with ascites. The proANP gene is present with invertebrates and plants as well as in humans and other vertebrates.  相似文献   

11.
Membrane fusion between uncharged lipid vesicles can be triggered by the peptide sequence 'B18' from the fertilization protein 'bindin', but it only proceeds efficiently in the presence of Zn(2+) ions. We studied (i) the interaction of Zn(2+) with the fusogenic peptide B18, (ii) the binding of B18 to 1-palmitoyl-2-oleoylglycero-3-phosphocholine (POPC), and (iii) the ternary system POPC/B18/Zn(2+). The complex formation of Zn(2+) with the central histidine-rich motif of B18 appears to shift the secondary structure away from a beta-sheet towards an alpha-helical conformation. Here we observe for the first time an essentially alpha-helical structure of the peptide when immersed in POPC bilayers which appears to represent its functional fusogenic state. Infrared linear dichroism suggests a peripheral, oblique insertion mode of B18, mediated by the hydrophobic patches along one side of the amphipathic peptide. Furthermore, the hydration level of the peptide is reduced, suggesting that the hydrophobic region of the bilayer is involved in the lipid/peptide interactions. The hydration capacity of the POPC/B18/Zn(2+) system is distinctly smaller than that of POPC/Zn(2+) without peptide. The accompanying decrease in the number of tightly bound water molecules per lipid can be interpreted as a reduction in the repulsive 'hydration' forces, which usually prevent the spontaneous fusion of lipid vesicles. Binding of the B18 peptide in the presence of Zn(2+) effectively renders the membrane surface more hydrophobic, thus allowing fusion to proceed.  相似文献   

12.
The neutral histidine-rich polypeptide (HRP) from human parotid secretion was isolated by ion-exchange and gel-filtration chromatography. The complete amino acid sequence determined by automated Edman degradation of the protein, tryptic and Staphylococcus aureus V8 protease peptides, and digestion with carboxypeptidase A is: (Formula: see text) where Pse represents phosphoserine. The polypeptide contains 38 residues and has Mr 4929. The charged amino acids predominate with 7 histidine, 4 arginine, 3 lysine, 3 aspartic acid, 3 glutamic acid residues, and 1 phosphoserine. Assuming minimal charge contributions from histidine and one negative charge from phosphoserine at pH 7, the net charge of HRP is balanced by an equal contribution of basic and acidic residues. Furthermore, the distribution of hydrophilic and hydrophobic residues along the polypeptide chain indicates that there is no structural polarity. The polypeptide lacks threonine, alanine, valine, cysteine, methionine, and isoleucine. HRP did not display sequence similarity with any protein sequence in the National Biomedical Research Foundation Data Bank. HRP is an active inhibitor of hydroxyapatite crystal growth from solutions supersaturated with respect to calcium phosphate salts and therefore must play a role in the stabilization of mineral-solute interactions in oral fluid. In addition, HRP is a potent inhibitor of Candida albicans germination and therefore may be a significant component of the antimicrobial host defense system in the oral cavity.  相似文献   

13.
Combinatorial peptide libraries have been playing a major role in the search for new drugs, ligands, enzyme substrates, and other specifically interacting molecules. The principal features of these libraries require a versatile repertoire, an easily identifiable tag for each of the library members, a simple method of synthesis, and a compability with the biochemical milieu. Two types of combinatorial libraries are in use: synthetic libraries and biological (mainly phage display) ones. An advantage of the biological libraries is due to the ability of each of the library members to replicate itself and to the fact that they carry their own coding sequences. The uniqueness of filamentous phage is that of its five virion proteins, three can tolerate the insertion of foreign peptides, each in a distinctive manner. The major coat protein, pVIII, is capable of displaying hundreds of peptide copies over the phage virion, pIII can display either one or five copies, and pVI, as opposed to the first two, displays its peptides such that the carboxy terminus is oriented outward. A major drawback of filamentous phage is its size. The length of an intact phage particle is 930 nm and it contains an ssDNA of 6400 bp. 2800 copies of the major coat protein form a “fish scale” cover over most of the virion DNA, whereas five copies of pIII, which has been the major protein used for library display, and five copies of pVI are located at one end of the filamentous virion. There is no doubt that in order to improve the quality of filamentous phage libraries, the size of phage should be drastically reduced. Comprehensive research on the phage life cycle and its structure will lead us to the construction of miniature phage and to other methods that will enable an in vivo expanding of the library repertoire as well as to binding-induced specific clone-proliferation.  相似文献   

14.
The simple and simultaneous purification of histidine-rich glycoprotein (HRG) and antithrombin III (AT III) from human plasma and gross structural characterization of HRG have been performed. The purification method consists of two chromatographic procedures using heparin-agarose and DEAE-Sephadex. The yields of HRG and AT III were 22 mg and 70 mg, respectively, from 1 liter of plasma. The purified HRG is a single-chain polypeptide with a molecular weight (Mr) of 75,000 on sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, indicating it was the native form of this protein. Cyanogen bromide cleavage of HRG, followed by analysis of the amino acid composition and determination of the amino-terminal sequence of each purified cyanogen bromide fragment established that the gross structure of HRG consisted of three cyanogen bromide fragments; an amino-terminal CN-50 kDa fragment (Mr 50,000) and a carboxy-terminal small fragment of eight amino acids, and a CN-30 kDa fragment (Mr 30,000) between them. As to the amino acid composition of the CN-30 kDa fragment, it had an unusually high content of histidine (25 mol%), suggesting the presence of a histidine-rich region(s) in the carboxy-terminal half of the molecule. These results together with our previous results (Koide, T., Odani, S., & Ono, T. (1982) FEBS Lett. 141, 222-224) and those of Morgan (Morgan, W.T. (1985) Biochemistry 24, 1496-1501) imply that HRG is composed of at least two domains with distinct functional properties; i.e. an amino-terminal domain with heparin-binding ability and a carboxy-terminal domain with heme- and divalent metal-binding abilities.  相似文献   

15.
Isolation and primary structure of human peptide YY   总被引:1,自引:0,他引:1  
The isolation, primary structure and chemical synthesis of human peptide YY (PYY) are described. The peptide was purified from human colonic extracts using a chemical method which detected the C-terminal tyrosine amide structure of PYY. Human PYY consists of 36 amino acid residues and the complete amino acid sequence is: Tyr-Pro-Ile-Lys-Pro-Glu-Ala-Pro-Gly-Glu- Asp-Ala-Ser-Pro-Glu-Glu-Leu-Asn-Arg-Tyr-Tyr-Ala-Ser-Leu-Arg-His-Tyr-Leu- Asn-Leu-Val-Thr-Arg-Gln-Arg-Tyr-NH2. The differences between the structures of porcine and human PYY are at positions 3 (Ala/Ile replacement) and 18 (Ser/Asn). Synthetic human PYY prepared using a solid-phase synthetic technique was found to be structurally identical to the natural peptide.  相似文献   

16.
The ultrastructure, absorbance, and elemental content of lipochondria present in the cytoplasm of Aplysia giant neurons have been investigated before and after 30–1,200 sec doses of white light at intensities which produce saturated light responses. The effects of exposure to the calcium ionophore A-23187 and to EGTA were also examined. The lipochondria of nonilluminated neurons are membrane-bound, and contain lipids, protein, Na, K, Mg, Ca, Si, Cl, Br, P, and a pigment which is probably β-carotene. The cytoplasm appeared to have little pigment. When neurons were illuminated for 20 min, 60–70% of the lipochondria showed marked ultrastructural alterations, the most notable being the appearance of membranous material. Earlier changes which occur after 30 sec of illumination include the appearance of paracrystalline arrays and mottling. Less than 10% of lipochondria in nonilluminated neurons have a similar appearance. These effects were greatly enhanced in illuminated neurons exposed to the calcium ionophore or EGTA. In nonilluminated neurons, the ionophore also produced ultrastructural changes. In frozen specimens, the calcium content of the most electron dense lipochondria of illuminated neurons was reduced. Other elements which were counted were also reduced. The lipochondria are the main intracellular site of photopigment. They may also act as an intracellular source for calcium which, as the accompanying paper indicated, may mediate phototransduction in Aplysia neurons.  相似文献   

17.
The ultrastructure and electrophysiological properties of neurons in the abdominal (visceral) ganglion of the marine opisthobranch gastropod Aplysia brasiliana have been investigated to determine whether this preparation compares favorably with the well studied A. californica for neurobiological research. In general, the topography, morphology and physiological characteristics, including synaptic connections, of neurons in this ganglion are quite similar to those of A. californica. There is close correspondence between the two animals in terms of each of the identified cells or neuronal clusters in the ganglion, including the presence of the cell L10 (interneuron I) in A. brasiliana which makes synaptic connections comparable with those in A. californica. New follower cells of this interneuron have been found in A. brasiliana. This species offers some advantages in that the connective tissue surrounding the ganglion is thinner and more transparent, making cell identification and penetration easier. A. brasiliana appears to exhibit the behaviors of A. californica that have been used in previous functional analyses of neural circuits. In addition, this species swims and exhibits a ?burrowing”? activity less commonly seen in A. californica. The rich repertoire of behaviors and accessibility of large identifiable and functionally interconnected neurons makes this species of Aplysia an excellent model preparation for future neurobiological studies. Similar, less thorough, investigations of the abdominal ganglion of A. dactylomela indicate that this species is also very similar to A. californica in terms of the identified cells in the abdominal ganglion.  相似文献   

18.
The primary structure of the basic isoform of Acanthamoeba profilin   总被引:6,自引:0,他引:6  
Acanthamoeba profilin-II [Kaiser, D.A., Sato, M., Ebert, R. F. and Pollard, T.D. (1986) J. Cell. Biol. 102, 221-226] was digested with trypsin or cleaved by 2-(2-nitrophenylsulphenyl)-3-methyl-3-bromoindolenine. The tryptic peptides were purified by reversed-phase-high-performance liquid chromatography and completely sequenced using automated gas-phase sequence analysis. The complete profilin-II sequence was deduced by ordering the tryptic peptides using the sequence information of the tryptophan-cleavage products. Acanthamoeba profilin-II was found to be homologous to the previously determined profilin-I sequence [Ampe, C., Vandekerckhove, J., Brenner, L., Tobacman, L. and Korn, E.D. (1985) J. Biol. Chem. 260, 834-840]. Like profilin-I, profilin-II consists of 125 amino acids, has a blocked NH2 terminus and a trimethyllysine residue at position 103. Profilin-II differs in at least 21 positions from one of the profilin-I isoforms. The amino acid exchanges are mainly concentrated in the middle part of the sequence. Profilin-II contains two more basic residues than profilin-I, which explains its higher isoelectric point.  相似文献   

19.
The ultrastructure, absorbance, and elemental content of lipochondria present in the cytoplasm of Aplysia giant neurons have been investigated before and after 30-1,200 sec doses of white light at intensities which produce saturated light responses. The effects of exposure to the calcium ionophore A-23187 and to EGTA were also examined. The lipochondria of nonilluminated neurons are membrane-bound, and contain lipids, protein, Na, K, Mg Ca, Si, Cl, Br, P, and a pigment which is probably beta-carotene. The cytoplasm appeared to have little pigment. When neurons were illuminated for 20 min, 60-70% of the lipochondria showed marked ultrastructural alterations, the most notable being the appearance of membranous material. Earlier changes which occur after 30 sec of illumination include the appearance of paracrystalline arrays and mottling. Less than 10% of lipochondria in nonilluminated neurons have a similar appearance. These effects were greatly enhanced in illuminated neurons exposed to the calcium ionophore or EGTA. In nonilluminated neurons, the ionophore also produced ultrastructural changes. In frozen specimens, the calcium content of the most electron dense lipochondria of illuminated neurons was reduced. Other elements which were counted were also reduced. The lipochondria are the main intracellular site of photopigment. They may also act as an intracellular source for calcium which, as the accompanying paper indicated, may mediate phototransduction in Aplysia neurons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号