首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Plantlets were regenerated from a selected salt-tolerant cell line of Shamouti orange (Citrus sinensis L. Osbeck). Embryogenesis was carried out both in the presence and absence of NaCl, yielding green and white globular embryos, respectively. Greening could be induced subsequently and normal heart shape embryo development was obtained. Plantlet formation required exposure to kinetin prior to the introduction of the root-inducing hormone naphthalene acetic acid. This system differs from the designed protocol for plant regeneration from the salt-sensitive, i.e., unselected callus. It is concluded that NaCl interferes with the regeneration process, with embryogenesis and/or embryo development into plantlets. Its presence during callus growth probably changes the balance of the phytohormones which is later manifested in plant regeneration. Citrus salt-tolerant callus yields salt-tolerant embryos. Salt-tolerant calli derived from regenerated plantlets indicate acquisition of salt tolerance on the whole plant level.  相似文献   

3.
4.
5.
6.
A comparative proteomic investigation between the pre-climacteric and climacteric mango fruits (cv. Keitt) was performed to identify protein species with variable abundance during ripening. Proteins were phenol-extracted from fruits, cyanine-dye-labeled, and separated on 2D gels at pH 4-7. Total spot count of about 373 proteins spots was detected in each gel and forty-seven were consistently different between pre-climacteric and climacteric fruits and were subjected to LC-MS/MS analysis. Functional classification revealed that protein species involved in carbon fixation and hormone biosynthesis decreased during ripening, whereas those related to catabolism and the stress-response, including oxidative stress and abiotic and pathogen defense factors, accumulated. In relation to fruit quality, protein species putatively involved in color development and pulp softening were also identified. This study on mango proteomics provides an overview of the biological processes that occur during ripening.  相似文献   

7.
A proteomic analysis was conducted on peach fruit mesocarp in order to better elucidate the biochemical and physiological events which characterize the transition of fruit from the “unripe” to the “ripe” phase.The first goal of the present work was to set-up a protocol suitable for improving protein extraction from peach mesocarp. The use of freeze-dried powdered tissue, together with the addition of phenol prior to the extraction with an aqueous buffer, significantly increased the protein yield and the quality of 2-DE gels. The proteomic profiles of the mesocarp from peach fruit of a non-melting flesh (NMF; ‘Oro A’) and a melting flesh (MF; ‘Bolero’) cultivar, at “unripe” and “ripe” stages as defined by some parameters typical of ripening, were then analyzed.The comparative analysis of the 2-DE gels showed that in NMF and MF peaches the relative volumes of 53 protein spots significantly changed in relation to both the ripening stage (“unripe” versus “ripe”) and/or the genetic background of the cultivar (‘Oro A’ versus ‘Bolero’).Thirty out of the 53 differently abundant spots were identified by LC-ESI-MS/MS. The analysis revealed enzymes involved in primary metabolism (e.g. C-compounds, carbohydrates, organic acids and amino acids) and in ethylene biosynthesis as well as proteins involved in secondary metabolism and responses to stress.Among these, 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) appeared to be one of the proteins with the largest change in relative abundance during the fruit transition from the pre-climacteric (“unripe”) to the climacteric (“ripe”) phase. Other proteins, such as S-adenosylmethionine synthetase and β-cyanoalanine synthase involved in ethylene metabolism, were also identified. Moreover, the changes in the relative abundances of a sucrose synthase and an α-amylase suggested differences between the two cultivars in the carbohydrate import activity of ripe fruit. The different accumulation of a few typical ROS-scavenger enzymes suggested that a higher oxidative stress occurred in MF with respect to NMF fruit. This result, together with data concerning the levels of total proteins and free amino acids and those regarding proteins involved in the maintenance of tissue integrity, was consistent with the hypothesis that the last phase of ripening in MF fruit is characterized by the appearance of a senescence status.The present study appears to define well some of the biochemical and physiological events that characterize the ripening of peach and, at the same time, provides interesting indications that could be employed in future marker assisted selection (MAS) programmes aimed to obtain MF fruits with higher ability to preserve tissue functionality maintaining for a longer time their organoleptic characteristics.  相似文献   

8.
Gas chromatography coupled with time-of-flight mass spectrometry and principal component analysis were used to obtain the metabolite profiles of guava (Psidium guajava) fruits. Results with two types of data-processing software, ChromaTOF and AMDIS, were compared to explain the differences between the samples. There were some differences in score and loading plot patterns of PCA as well as in the composition of the metabolites. However, little difference was observed in the type of metabolites detected and identified using either type of software. Both the flesh and peel of premature and mature white guava fruits were compared for the analysis of the metabolite profiles. Malic acid, aspartic acid, and glucose were the major metabolites distinguishing the different parts of guava fruits in the PCA loading plot. In addition, the metabolic profiles of the fruits revealed significant changes in some metabolites during ripening. The major components contributing to the separation were serine, citric acid, fructose, sucrose, and some unknowns. In particular, sucrose, fructose, serine and citric acid were related to the ripening of guava fruits. Fructose and sucrose were increased whereas citric acid was decreased during guava fruit ripening.  相似文献   

9.

Background  

The production of Citrus, the largest fruit crop of international economic value, has recently been imperiled due to the introduction of the bacterial disease Citrus canker. No significant improvements have been made to combat this disease by plant breeding and nuclear transgenic approaches. Chloroplast genetic engineering has a number of advantages over nuclear transformation; it not only increases transgene expression but also facilitates transgene containment, which is one of the major impediments for development of transgenic trees. We have sequenced the Citrus chloroplast genome to facilitate genetic improvement of this crop and to assess phylogenetic relationships among major lineages of angiosperms.  相似文献   

10.
Soil salinization has become a severe global problem and salinity is one of the most severe abiotic stresses inhibiting growth and survival of mycorrhizal fungi and their host plants. Salinity tolerance of ectomycorrhizal fungi and survival of ectomycorrhizal inocula is essential to reforestation and ecosystem restoration in saline areas. Proteomic changes of an ectomycorrhizal fungus, Boletus edulis, when exposed to salt stress conditions (4 % NaCl, w/v) were determined using two-dimensional electrophoresis (2DE) and mass spectrometry (MS) techniques. Twenty-two protein spots, 14 upregulated and 8 downregulated, were found changed under salt stress conditions. Sixteen changed protein spots were identified by nanospray ESI Q-TOF MS/MS and liquid chromatography MS/MS. These proteins were involved in biosynthesis of methionine and S-adenosylmethionine, glycolysis, DNA repair, cell cycle control, and general stress tolerance, and their possible functions in salinity adaptation ofBoletus edulis were discussed.  相似文献   

11.
12.
The concentration of soluble proteins in open flowers of sweet orange (Citrus sinensis (L.) Osbeck) was about 35% of the protein content found in green leaves, while ovary and stigma, with attached style, contained up to 85%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) indicates that flowers and leaves contained ribulose bisphosphate carboxylase-oxygenase (Rubisco). At least 12 polypeptides, ranging from 22 to 100 kDa, were more distinct in flowers than in leaves. The polypeptide band at about 100 kDa in the flower extract suggests the presence of phosphoenolpyruvate carboxylase (PEPCase) in citrus flowers. Activity of Rubisco and PEPCase, expressed in μmol g tissue fresh weight−1 hr−1, averaged 14.2 and 64.6 for intact open flowers, and 547.9 and 63.3 for the leaves, respectively. Starch and reducing sugars were 1.2- and 8.4-fold higher, respectively, and dark respiration rates were about five-fold greater for open flowers than fully expanded, sun leaves. Quinic and malic acids made up about 96% of the organic acids found in flowers and leaves. Ascorbic, citric, fumaric, and shikimic acids were in small or trace amounts. The large accumulation of starch and soluble sugars, in addition to the presence and activity of Rubisco and PEPCase, indicates that the flowers of sweet orange would have some capability to perform photosynthetic CO2 assimilation, the metabolites of which might play some important role in flower development and fruit setting.  相似文献   

13.
Metaproteomics is a strategy to understand the taxonomy, functionality and metabolic pathways of the microbial communities. The relationship among the symbiotic microbiota in the entire lichen thallus, Dermatocarpon miniatum, was evaluated using the metaproteomic approach. Proteomic profiling using one-dimensional SDS-PAGE followed by LC-MS/MS analysis resulted in a total of 138 identified proteins via Mascot search against UniRef100 and Swiss-Prot databases. In addition to the fungal and algal partners, D. miniatum proteome encompasses proteins from prokaryotes, which is a multifarious community mainly dominated by cyanobacteria and proteobacteria. While proteins assigned to fungus were the most abundant (55 %), followed by protists (16 %), bacterial (13 %), plant (11 %), and viral (1 %) origin, whereas 4 % remained undefined. Various proteins were assigned to the different lichen symbionts by using Gene Ontology (GO) terms, e.g. fungal proteins involved in the oxidation-reduction process, protein folding and glycolytic process, while protists and bacterial proteins were involved in photosynthetic electron transport in photosystem II (PS II), ATP synthesis coupled proton transport, and carbon fixation. The presence of bacterial communities extended the traditional concept of fungal-algal lichen symbiotic interaction.  相似文献   

14.
汁胞粒化是柑橘类果实一类普遍的生理失调病害,主要表现为汁胞硬度增加,果实品质降低。为了明确汁胞粒化过程其他果实组织的生理代谢特征,该试验以成熟‘琯溪蜜柚’果实为材料,室温贮藏60 d,测定不同贮藏阶段果实背面维管束汁胞、侧面维管束汁胞、囊衣和果皮总细胞壁物质含量,以及两类汁胞可溶性固形物含量,同时利用透射电子显微镜观察果实背面维管束和侧面维管束细胞超微结构的动态变化。结果显示:(1)贮藏10 d时两类果实维管束的筛管和伴胞次生细胞壁开始明显加厚,韧皮部薄壁细胞线粒体和囊泡数量开始增多,而且次生细胞壁也开始明显加厚;贮藏20 d时两类维管束韧皮部薄壁细胞线粒体和囊泡数量持续增加,而且高尔基体出现(之后消失),同时囊衣和果皮总细胞壁物质含量开始显著提高;贮藏40 d时仅侧面维管束韧皮部薄壁细胞线粒体数量持续增多,侧面维管束汁胞总细胞壁物质含量开始显著升高;贮藏60 d时两类果实维管束次生细胞壁持续加厚,囊衣、果皮和侧面维管束汁胞总细胞壁物质含量均持续显著升高,然而至贮藏期结束背面维管束汁胞总细胞壁物质含量始终无显著变化。(2)贮藏期内囊衣总细胞壁物质含量始终显著高于果皮,而果皮总细胞壁物质含量始终显著高于两类汁胞;贮藏后期侧面维管束汁胞总细胞壁物质含量显著高于背面维管束汁胞。(3)在果实贮藏过程中背面维管束汁胞可溶性固形物含量始终无显著变化,而侧面维管束汁胞可溶性固形物含量从贮藏40 d至贮藏期结束持续显著降低。研究表明,贮藏期柚果实维管束、囊衣和果皮中细胞壁物质代谢的变化早于汁胞;发现果实维管束韧皮部薄壁细胞内线粒体数量增加的同时维管束次生细胞壁明显加厚,在整个贮藏期内侧面维管束汁胞可溶性固形物含量的显著降低伴随着总细胞壁物质含量的显著升高。这些结果可能有助于柑橘类果实粒化机理的全面揭示。  相似文献   

15.
Different sugars provided to bacteria as single sources of carbon and energy require the induction of different metabolic enzymes, transporters, and uptake systems in order to support growth and cell survival. Using a nano–high-performance liquid chromatography/mass spectrometry (nano-HPLC/MS) system we constructed comprehensive peptide maps for Escherichia coli grown with either lactose or glucose in minimal medium. Digested bacterial samples were separated in a two-dimensional manner by combining strong cation exchange (SCX) and reversed-phased (RP) chromatography. Peptides were eluted online to an iontrap MS instrument and further analyzed by tandem MS fragmentation. Bacterial proteins originating from the differing samples were analyzed by searching the Swiss Prot Database. Data are presented that show the ability to detect several hundred different proteins significantly expressed under both conditions. Several enzymes and binding proteins related to the lactose metabolism were only identified in the sample grown with this carbon source.  相似文献   

16.
A new method for obtaining transgenic sweet orange plants was developed in which positive selection (Positech) based on the Escherichia coli phosphomannose-isomerase (PMI) gene as the selectable marker gene and mannose as the selective agent was used. Epicotyl segments from in vitro-germinated plants of Valencia, Hamlin, Natal and Pera sweet oranges were inoculated with Agrobacterium tumefaciens EHA101-pNOV2116 and subsequently selected on medium supplemented with different concentrations of mannose or with a combination of mannose and sucrose as a carbon source. Genetic transformation was confirmed by PCR and Southern blot. The transgene expression was evaluated using a chlorophenol red assay and isoenzymes. The transformation efficiency rate ranged from 3% to 23.8%, depending on cultivar. This system provides an efficient manner for selecting transgenic sweet orange plants without using antibiotics or herbicides.Abbreviations BAP Benzylaminopurine - CPR Chlorophenol red - EGTA Ethylene glycol-0-0- bis (2, aminoethyl) N, N, N, N tetraacetic acid - MTT [3-(4,5-Dimethyl thiazol-2-YL)-2,5-diphenyl] tetrazolium bromide - PMI Phosphomannose isomerase (EC 5.3.1.8) - PMS Phenazine methosulphate Communicated by L. Peña  相似文献   

17.

Background  

Enormous work has shown that polyamines are involved in a variety of physiological processes, but information is scarce on the potential of modifying disease response through genetic transformation of a polyamine biosynthetic gene.  相似文献   

18.
Specialized natural product analysis of six Turkish endemic and two narrowly distributed Centaurea L. taxa was performed via electrospray ionization mass spectrometry (ESI-MS) fingerprinting and liquid chromatography-tandem mass spectrometry (LC-MS/MS), which is an effective methodology that is widely used for fast screening of complex natural mixtures such as food extracts, but not has not been used as commonly for plant chemophenetics. This method is preferable when it is aimed to compare a large number of plant extracts for chemophenetic purposes and when it is difficult to provide equally good chromatographic separation in all of the extracts. ESI-MS shows the major compounds in fingerprinting extracts. LC-MS/MS provides identification according to fragmentation with the advantage of MS/MS, and validation can be performed in selected reaction monitoring (SRM) mode with simultaneous precursor and product ion scans. Herein, sixteen flavones, four flavonols, four flavanones, two lignans, three sesquiterpene lactones, and four phenolic acids, a total of thirty three substances, were identified tentatively or unambiguously from the extracts. It was concluded that ESI-MS fingerprinting is a suitable method for plant chemophenetics when coupled and validated with LC-MS/MS. Moreover, it was concluded that sesquiterpene lactones, lignans, and flavonoids are suitable for taxonomic purposes in Centaurea owing to species-specific metabolite profiles.  相似文献   

19.
Cistus creticus L., an aromatic species from the Mediterranean area, contains various diterpenes bearing the labdane skeleton. The production of essential oil from this species has potential economic value, but so far, it has not been optimized. In order to contribute to a better knowledge of this species and to its differentiation, the morphological characters, volatile chemical composition and genetic data of two subspecies (C. creticus subsp. eriocephalus and C. creticus subsp. corsicus) were investigated. The leaf trichomes were studied using scanning electron microscopy. The chemical composition of Corsican essential oil (C. creticus subsp. corsicus) has been reported using GC, GC/MS and 13C NMR; the main constituents were oxygenated labdane diterpenes (33.9%) such as 13-epi-manoyl oxide (18.5%). Using plant material (54 samples) collected from 18 geographically distinct areas of the islands of Corsica and Sardinia, the basis of variation in the headspace solid-phase microextraction volatile fraction and an inter-simple sequence repeat genetic analysis were also examined. It was shown that the two subspecies of C. creticus differed in morphology, essential oil production, volatile fraction composition and genetic data.  相似文献   

20.
In this study, we performed the first high‐throughput proteomic analysis of developing rachis (cob) from maize genotype Mp313E. Using two proteomic approaches, 2‐DE and 2‐D LC, we identified 967 proteins. A 2‐D proteome reference map was established. Functional classification of identified proteins revealed that proteins involved in various cellular metabolisms, response to stimulus and transport, were the most abundant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号