首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Clustering of acetylcholine receptors (AChRs) is a critical step in neuromuscular synaptogenesis, and is induced by agrin and laminin which are thought to act through different signaling mechanisms. We addressed whether laminin redistributes postsynaptic proteins and requires key elements of the agrin signaling pathway to cause AChR aggregation. In myotubes, laminin-1 rearranged dystroglycans and syntrophins into a laminin-like network, whereas inducing AChR-containing clusters of dystrobrevin, utrophin, and, to a marginal degree, MuSK. Laminin-1 also caused extensive coclustering of rapsyn and phosphotyrosine with AChRs, but none of these clusters were observed in rapsyn -/- myotubes. In parallel with clustering, laminin-1 induced tyrosine phosphorylation of AChR beta and delta subunits. Staurosporine and herbimycin, inhibitors of tyrosine kinases, prevented laminin-induced AChR phosphorylation and AChR and phosphotyrosine clustering, and caused rapid dispersal of clusters previously induced by laminin-1. Finally, laminin-1 caused normal aggregation of AChRs and phosphotyrosine in myotubes lacking both Src and Fyn kinases, but these clusters dispersed rapidly after laminin withdrawal. Thus, laminin-1 redistributes postsynaptic proteins and, like agrin, requires tyrosine kinases for AChR phosphorylation and clustering, and rapsyn for AChR cluster formation, whereas cluster stabilization depends on Src and Fyn. Therefore, the laminin and agrin signaling pathways overlap intracellularly, which may be important for neuromuscular synapse formation.  相似文献   

3.
The formation of the neuromuscular junction is characterized by the progressive accumulation of nicotinic acetylcholine receptors (AChRs) in the postsynaptic membrane facing the nerve terminal, induced predominantly through the agrin/muscle-specific kinase (MuSK) signaling cascade. However, the cellular mechanisms linking MuSK activation to AChR clustering are still poorly understood. Here, we investigate whether lipid rafts are involved in agrin-elicited AChR clustering in a mouse C2C12 cell line. We observed that in C2C12 myotubes, both AChR clustering and cluster stability were dependent on cholesterol, because depletion by methyl-beta-cyclodextrin inhibited cluster formation or dispersed established clusters. Importantly, AChR clusters resided in ordered membrane domains, a biophysical property of rafts, as probed by Laurdan two-photon fluorescence microscopy. We isolated detergent-resistant membranes (DRMs) by three different biochemical procedures, all of which generate membranes with similar cholesterol/GM1 ganglioside contents, and these were enriched in several postsynaptic components, notably AChR, syntrophin, and raft markers flotillin-2 and caveolin-3. Agrin did not recruit AChRs into DRMs, suggesting that they are present in rafts independently of agrin activation. Consequently, in C2C12 myotubes, agrin likely triggers AChR clustering or maintains clusters through the coalescence of lipid rafts. These data led us to propose a model in which lipid rafts play a pivotal role in the assembly of the postsynaptic membrane at the neuromuscular junction upon agrin signaling.  相似文献   

4.
The maintenance of a high density of postsynaptic receptors is essential for proper synaptic function. At the neuromuscular junction, acetylcholine receptor (AChR) aggregation is induced by nerve-clustering factors and mediated by scaffolding proteins. Although the mechanisms underlying AChR clustering have been extensively studied, the role that the receptors themselves play in the clustering process and how they are organized with scaffolding proteins is not well understood. Here, we report that the exposure of AChRs labeled with Alexa 594 conjugates to relatively low-powered laser light caused an effect similar to chromaphore-assisted light inactivation (CALI) , which resulted in the unexpected dissipation of the illuminated AChRs from clusters on cultured myotubes. This technique enabled us to demonstrate that AChR removal from illuminated regions induced the removal of scaffolding proteins and prevented the accumulation of new AChRs and associated scaffolding proteins. Further, the dissipation of clustered AChRs and scaffold was spatially restricted to the illuminated region and had no effect on neighboring nonilluminated AChRs. These results provide direct evidence that AChRs are essential for the local maintenance and accumulation of intracellular scaffolding proteins and suggest that the scaffold is organized into distinct modular units at AChR clusters.  相似文献   

5.
The formation of acetylcholine receptor (AChR) clusters at the neuromuscular junction was investigated by observing the sequential changes in AChR cluster distribution on cultured Xenopus muscle cells. AChRs were labeled with tetramethylrhodamine-conjugated alpha-bungarotoxin (TMR-alpha BT). Before innervation AChRs were distributed over the entire surface of muscle cells with occasional spots of high density (hot spots). When the nerve contacted the muscle cell, the large existing hot spots disappeared and small AChR clusters (less than 1 micron in diameter) initially emerged from the background along the area of nerve contact. They grew in size, increased in number, and fused to form larger clusters over a period of 1 or 2 days. Receptor clusters did not migrate as a whole as observed during "cap" formation in B lymphocytes. The rate of recruitment of AChRs at the nerve-muscle junction varied from less than 50 binding sites to 1000 sites/hr for alpha BT. In this study the diffusion-trap mechanism was tested for the nerve-induced receptor accumulation. The diffusion coefficient of diffusely distributed AChRs was measured using the fluorescence photobleaching recovery method and found to be 2.45 X 10(-10) cm2/sec at 22 degrees C. There was no significant difference in these values among the muscle cells cultured without nerve, the non-nerve-contacted muscle cells in nerve-muscle cultures, and the nerve-contacted muscle cells. It was found that the diffusion of receptors in the membrane is not rate-limiting for AChR accumulation.  相似文献   

6.
During the development of the neuromuscular junction, motor axons induce the clustering of acetylcholine receptors (AChRs) and increase their metabolic stability in the muscle membrane. Here, we asked whether the synaptic organizer agrin might regulate the metabolic stability and density of AChRs by promoting the recycling of internalized AChRs, which would otherwise be destined for degradation, into synaptic sites. We show that at nerve-free AChR clusters induced by agrin in extrasynaptic membrane, internalized AChRs are driven back into the ectopic synaptic clusters where they intermingle with pre-existing and new receptors. The extent of AChR recycling depended on the strength of the agrin stimulus, but not on the development of junctional folds, another hallmark of mature postsynaptic membranes. In chronically denervated muscles, in which both AChR stability and recycling are significantly decreased by muscle inactivity, agrin maintained the amount of recycled AChRs at agrin-induced clusters at a level similar to that at denervated original endplates. In contrast, AChRs did not recycle at agrin-induced clusters in C2C12 or primary myotubes. Thus, in muscles in vivo, but not in cultured myotubes, neural agrin promotes the recycling of AChRs and thereby increases their metabolic stability.  相似文献   

7.
Madhavan R  Peng HB 《IUBMB life》2005,57(11):719-730
The neuromuscular junction (NMJ) is a synapse that develops between a motor neuron and a muscle fiber. A defining feature of NMJ development in vertebrates is the re-distribution of muscle acetylcholine (ACh) receptors (AChRs) following innervation, which generates high-density AChR clusters at the postsynaptic membrane and disperses aneural AChR clusters formed in muscle before innervation. This process in vivo requires MuSK, a muscle-specific receptor tyrosine kinase that triggers AChR re-distribution when activated; rapsyn, a muscle protein that binds and clusters AChRs; agrin, a nerve-secreted heparan-sulfate proteoglycan that activates MuSK; and ACh, a neurotransmitter that stimulates muscle and also disperses aneural AChR clusters. Moreover, in cultured muscle cells, several additional muscle- and nerve-derived molecules induce, mediate or participate in AChR clustering and dispersal. In this review we discuss how regulation of AChR re-distribution by multiple factors ensures aggregation of AChRs exclusively at NMJs.  相似文献   

8.
Agrin, a synapse-organizing protein externalized by motor axons at the neuromuscular junction (NMJ), initiates a signaling cascade in muscle cells leading to aggregation of postsynaptic proteins, including acetylcholine receptors (AChRs). We examined whether nitric oxide synthase (NOS) activity is required for agrin-induced aggregation of postsynaptic AChRs at the embryonic NMJ in vivo and in cultured muscle cells. Inhibition of NOS reduced AChR aggregation at embryonic Xenopus NMJs by 50-90%, whereas overexpression of NOS increased AChR aggregate area 2- to 3-fold at these synapses. NOS inhibitors completely blocked agrin-induced AChR aggregation in cultured embryonic muscle cells. Application of NO donors to muscle cells induced AChR clustering in the absence of agrin. Our results indicate that NOS activity is necessary for postsynaptic differentiation of embryonic NMJs and that NOS is a likely participant in the agrin-MuSK signaling pathway of skeletal muscle cells.  相似文献   

9.
Dystroglycan is a member of the transmembrane dystrophin glycoprotein complex in muscle that binds to the synapse-organizing molecule agrin. Dystroglycan binding and AChR aggregation are mediated by two separate domains of agrin. To test whether dystroglycan plays a role in receptor aggregation at the neuromuscular junction, we overexpressed it by injecting rabbit dystroglycan RNA into one- or two-celled Xenopus embryos. We measured AChR aggregation in myotomes by labeling them with rhodamine-alpha-bungarotoxin followed by confocal microscopy and image analysis. Dystroglycan overexpression decreased AChR aggregation at the neuromuscular junction. This result is consistent with dystroglycan competition for agrin without signaling AChR aggregation. It also supports the hypothesis that dystroglycan is not the myotube-associated specificity component, (MASC) a putative coreceptor needed for agrin to activate muscle-specific kinase (MuSK) and signal AChR aggregation. Dystroglycan was distributed along the surface of muscle membranes, but was concentrated at the ends of myotomes, where AChRs normally aggregate at synapses. Overexpressed dystroglycan altered AChR aggregation in a rostral-caudal gradient, consistent with the sequential development of neuromuscular synapses along the embryo. Increasing concentrations of dystroglycan RNA did not further decrease AChR aggregation, but decreased embryo survival. Development often stopped during gastrulation, suggesting an essential, nonsynaptic role of dystroglycan during this early period of development.  相似文献   

10.
The developing neuromuscular junction has provided an important paradigm for studying synapse formation. An outstanding feature of neuromuscular differentiation is the aggregation of acetylcholine receptors (AChRs) at high density in the postsynaptic membrane. While AChR aggregation is generally believed to be induced by the nerve, the mechanisms underlying aggregation remain to be clarified. A 43-kD protein (43k) normally associated with the cytoplasmic aspect of AChR clusters has long been suspected of immobilizing AChRs by linking them to the cytoskeleton. In recent studies, the AChR clustering activity of 43k has, at last, been demonstrated by expressing recombinant AChR and 43k in non-muscle cells. Mutagenesis of 43k has revealed distinct domains within the primary structure which may be responsible for plasma membrane targeting and AChR binding. Other lines of study have provided clues as to how nerve-derived (extracellular) AChR-cluster inducing factors such as agrin might activate 43k-driven postsynaptic membrane specialization.  相似文献   

11.
The postsynaptic apparatus of the neuromuscular junction (NMJ) traps and anchors acetylcholine receptors (AChRs) at high density at the synapse. We have previously shown that microtubule (MT) capture by CLASP2, a MT plus-end-tracking protein (+TIP), increases the size and receptor density of AChR clusters at the NMJ through the delivery of AChRs and that this is regulated by a pathway involving neuronal agrin and several postsynaptic kinases, including GSK3. Phosphorylation by GSK3 has been shown to cause CLASP2 dissociation from MT ends, and nine potential phosphorylation sites for GSK3 have been mapped on CLASP2. How CLASP2 phosphorylation regulates MT capture at the NMJ and how this controls the size of AChR clusters are not yet understood. To examine this, we used myotubes cultured on agrin patches that induce AChR clustering in a two-dimensional manner. We show that expression of a CLASP2 mutant, in which the nine GSK3 target serines are mutated to alanine (CLASP2–9XS/9XA) and are resistant to GSK3β-dependent phosphorylation, promotes MT capture at clusters and increases AChR cluster size, compared with myotubes that express similar levels of wild type CLASP2 or that are noninfected. Conversely, myotubes expressing a phosphomimetic form of CLASP2 (CLASP2–8XS/D) show enrichment of immobile mutant CLASP2 in clusters, but MT capture and AChR cluster size are reduced. Taken together, our data suggest that both GSK3β-dependent phosphorylation and the level of CLASP2 play a role in the maintenance of AChR cluster size through the regulated capture and release of MT plus-ends.  相似文献   

12.
At the developing neuromuscular junction the Agrin receptor MuSK is the central organizer of subsynaptic differentiation induced by Agrin from the nerve. The expression of musk itself is also regulated by the nerve, but the mechanisms involved are not known. Here, we analyzed the activation of a musk promoter reporter construct in muscle fibers in vivo and in cultured myotubes, using transfection of multiple combinations of expression vectors for potential signaling components. We show that neuronal Agrin by activating MuSK regulates the expression of musk via two pathways: the Agrin-induced assembly of muscle-derived neuregulin (NRG)-1/ErbB, the pathway thought to regulate acetylcholine receptor (AChR) expression at the synapse, and via a direct shunt involving Agrin-induced activation of Rac. Both pathways converge onto the same regulatory element in the musk promoter that is also thought to confer synapse-specific expression to AChR subunit genes. In this way, a positive feedback signaling loop is established that maintains musk expression at the synapse when impulse transmission becomes functional. The same pathways are used to regulate synaptic expression of AChR epsilon. We propose that the novel pathway stabilizes the synapse early in development, whereas the NRG/ErbB pathway supports maintenance of the mature synapse.  相似文献   

13.
We used the loose patch voltage clamp technique and rhodamine-conjugated alpha-bungarotoxin to study the regulation of Na channel (NaCh) and acetylcholine receptor (AChR) distribution on dissociated adult skeletal muscle fibers in culture. The aggregate of AChRs and NaChs normally found in the postsynaptic membrane of these cells gradually fragmented and dispersed from the synaptic region after several days in culture. This dispersal was the result of the collagenase treatment used to dissociate the cells, suggesting that a factor associated with the extracellular matrix was responsible for maintaining the high concentration of AchRs and NaChs at the neuromuscular junction. We tested whether the basal lamina protein agrin, which has been shown to induce the aggregation of AChRs on embryonic myotubes, could similarly influence the distribution of NaChs. By following identified fibers, we found that agrin accelerated both the fragmentation of the endplate AChR cluster into smaller patches as well as the appearance of new AChR clusters away from the endplate. AChR patches which were fragments of the original endplate retained a high density of NaChs, but no new NaCh hotspots were found elsewhere on the fiber, including sites of newly formed AChR clusters. The results are consistent with the hypothesis that extracellular signals regulate the distribution of AChRs and NaChs on skeletal muscle fibers. While agrin probably serves this function for the AChR, it does not appear to play a role in the regulation of the NaCh distribution.  相似文献   

14.
During synaptogenesis at the neuromuscular junction, nicotinic acetylcholine receptors (AChRs) are organized into high-density postsynaptic clusters that are critical for efficient synaptic transmission. Rapsyn, an AChR associated cytoplasmic protein, is essential for the aggregation and immobilization of AChRs at the neuromuscular junction. Previous studies have shown that when expressed in nonmuscle cells, both assembled and unassembled AChR subunits are clustered by rapsyn, and the clustering of the alpha subunit is dependent on its major cytoplasmic loop. In the present study, we investigated the mechanism of rapsyn-induced clustering of the AChR beta, gamma, and delta subunits by testing mutant subunits for the ability to cocluster with rapsyn in transfected QT6 cells. For each subunit, deletion of the major cytoplasmic loop, between the third and fourth transmembrane domains, dramatically reduced coclustering with rapsyn. Furthermore, each major cytoplasmic loop was sufficient to mediate clustering of an unrelated transmembrane protein. The AChR subunit mutants lacking the major cytoplasmic loops could assemble into alphadelta dimers, but these were poorly clustered by rapsyn unless at least one mutant was replaced with its wild-type counterpart. These results demonstrate that the major cytoplasmic loop of each AChR subunit is both necessary and sufficient for mediating efficient clustering by rapsyn, and that only one such domain is required for rapsyn-mediated clustering of an assembly intermediate, the alphadelta dimer.  相似文献   

15.
Agrin induces the formation of highly localized specializations on myotubes at which nicotinic acetylcholine receptors (AChRs) and many other components of the postsynaptic apparatus at the vertebrate skeletal neuromuscular junction accumulate. Agrin also induces AChR tyrosine phosphorylation. Treatments that inhibit tyrosine phosphorylation prevent AChR aggregation. To examine further the relationship between tyrosine phosphorylation and receptor aggregation, we have used the technique of fluorescence recovery after photobleaching to assess the lateral mobility of AChRs and other surface proteins in mouse C2 myotubes treated with agrin or with pervanadate, a protein tyrosine phosphatase inhibitor. Agrin induced the formation of patches in C2 myotubes that stained intensely with anti-phosphotyrosine antibodies and within which AChRs were relatively immobile. Pervanadate, on the other hand, increased protein tyrosine phosphorylation throughout the myotube and caused a reduction in the mobility of diffusely distributed AChRs, without affecting the mobility of other membrane proteins. Pervanadate, like agrin, caused an increase in AChR tyrosine phosphorylation and a decrease in the rate at which AChRs could be extracted from intact myotubes by mild detergent treatment, suggesting that immobilized receptors were phosphorylated and therefore less extractable. Indeed, phosphorylated receptors were extracted from agrin-treated myotubes more slowly than nonphosphorylated receptors. AChR aggregates at developing neuromuscular junctions in embryonic rat muscles also labeled with anti- phosphotyrosine antibodies, suggesting that tyrosine phosphorylation could mediate AChR aggregation in vivo as well. Thus, agrin appears to induce AChR aggregation by creating circumscribed domains of increased protein tyrosine phosphorylation within which receptors become phosphorylated and immobilized.  相似文献   

16.
Aggregation of acetylcholine receptors (AChRs) is an important early feature of the postsynaptic development of the vertebrae neuromuscular junction. At later stages of differentiation, aggregates are remodeled and stabilized. Aggregation of AChRs can be induced on rat myotubes in culture within 4 hr by treatment with embryonic pig brain extract (EBX). In this study, further sequential changes in the distribution of AChRs were followed by video-intensified fluorescence microscopy. These studies have revealed that groups of AChR aggregates that have formed after 4 hr in EBX are reorganized during the exposure to EBX for 20 additional hr to form a smaller number of larger, oval-shaped aggregates. We have named these two types of aggregates "4-hr aggregates" and "24-hr aggregates". This reorganization occurs by the expansion and merging of individual aggregates within a group, and by the incorporation of newly inserted AChRs. The 24-hr aggregates are an average of 15 times greater in area than 4-hr aggregates, and contain regions with an apparent AChR site density (fluorescence intensity) that is more than twice that of 4-hr aggregates. Electron microscopy of mapped 24-hr aggregates revealed that folded plasma membrane is associated with these regions, probably accounting for the elevated fluorescence. The 24-hr aggregates are more stable than 4-hr aggregates, as determined by their significantly slower disassembly after removal of EBX, elevation of temperature (38 degrees C), reduction of extracellular calcium levels (0.1 mM), or the addition of sodium azide (7 mM). This was determined by following disassembly both statistically (using fixed cultures) and by direct observations of living myotubes. These findings were confirmed by measuring the sequential changes in relative AChR site density over time in individual living myotubes. Thus, 24-hr aggregates form by the reorganization of 4-hr aggregates; exhibit a more regular, compact shape; and are more stable than 4-hr aggregates. These changes in AChR organization and aggregate stability resemble the changes occurring after the initial formation of junctional AChR aggregates during embryonic development, demonstrating additional similarities between this model system and the developing neuromuscular junction.  相似文献   

17.

Background

Postsynaptic enrichment of acetylcholine receptors (AChRs) at the vertebrate neuromuscular junction (NMJ) depends on the activation of the muscle receptor tyrosine MuSK by neural agrin. Agrin-stimulation of MuSK is known to initiate an intracellular signaling cascade that leads to the clustering of AChRs in an actin polymerization-dependent manner, but the molecular steps which link MuSK activation to AChR aggregation remain incompletely defined.

Methodology/Principal Findings

In this study we used biochemical, cell biological and molecular assays to investigate a possible role in AChR clustering of cortactin, a protein which is a tyrosine kinase substrate and a regulator of F-actin assembly and which has also been previously localized at AChR clustering sites. We report that cortactin was co-enriched at AChR clusters in situ with its target the Arp2/3 complex, which is a key stimulator of actin polymerization in cells. Cortactin was further preferentially tyrosine phosphorylated at AChR clustering sites and treatment of myotubes with agrin significantly enhanced the tyrosine phosphorylation of cortactin. Importantly, forced expression in myotubes of a tyrosine phosphorylation-defective cortactin mutant (but not wild-type cortactin) suppressed agrin-dependent AChR clustering, as did the reduction of endogenous cortactin levels using RNA interference, and introduction of the mutant cortactin into muscle cells potently inhibited synaptic AChR aggregation in response to innervation.

Conclusion

Our results suggest a novel function of phosphorylation-dependent cortactin signaling downstream from agrin/MuSK in facilitating AChR clustering at the developing NMJ.  相似文献   

18.
Both neurotrophic factors and activity regulate synaptogenesis. At neuromuscular synapses, the neural factor agrin released from motor neuron terminals stimulates postsynaptic specialization by way of the muscle specific kinase MuSK. In addition, activity through acetylcholine receptors (AChRs) has been implicated in the stabilization of pre- and postsynaptic contacts on muscle at various stages of development. We show here that activation of AChRs with specific concentrations of nicotine is sufficient to induce AChR aggregation and that this induction requires the function of L-type calcium channels (L-CaChs). Furthermore, AChR function is required for agrin induced AChR aggregation in C2 muscle cells. The same concentrations of nicotine did not induce observable tyrosine phosphorylation on either MuSK or the AChR beta subunit, suggesting significant differences between the mechanisms of agrin and activity induced aggregation. The AChR/L-CaCh pathway provides a mechanism by which neuromuscular signal transmission can act in concert with the agrin-MuSK signaling cascade to regulate NMJ formation.  相似文献   

19.
Neuregulin (NRG)/ErbB signaling is involved in numerous developmental processes in the nervous system, including synapse formation and function in the central nervous system. Although intensively investigated, its role at the neuromuscular synapse has remained elusive. Here, we demonstrate that loss of neuromuscular NRG/ErbB signaling destabilized anchoring of acetylcholine receptors (AChRs) in the postsynaptic muscle membrane and that this effect was caused by dephosphorylation of α-dystrobrevin1, a component of the postsynaptic scaffold. Specifically, in mice in which NRG signaling to muscle was genetically or pharmacologically abolished, postsynaptic AChRs moved rapidly from the synaptic to the perisynaptic membrane, and the subsynaptic scaffold that anchors the AChRs was impaired. These defects combined compromised synaptic transmission. We further show that blockade of NRG/ErbB signaling abolished tyrosine phosphorylation of α-dystrobrevin1, which reduced the stability of receptors in agrin-induced AChR clusters in cultured myotubes. Our data indicate that NRG/ErbB signaling maintains high efficacy of synaptic transmission by stabilizing the postsynaptic apparatus via phosphorylation of α-dystrobrevin1.  相似文献   

20.
During the formation of the neuromuscular junction, the nerve induces the clustering of acetylcholine receptors (AChR) in the postsynaptic membrane. This process can be mimicked by treating cultured Xenopus myotomal muscle cells with basic polypeptide-coated latex beads. Using this bead-muscle coculture system, we examined the role of lateral migration of AChRs in the formation of the clusters. First, we studied the contributions of the preexisting and newly inserted AChRs. After the cluster formation was triggered by the addition of the beads, preexisting receptors were immediately recruited to the bead-muscle contacts and they remained to be the dominant contributor during the first 24 hr. New AChRs, which were inserted after the addition of the beads, appeared at the clusters after a 4-hr delay and, thereafter, there was a steady increase in their contribution. After 24-48 hr, newly inserted AChRs could be detected at the bead-induced clusters to the same extent as the preexisting AChRs. During this period, new receptors were continuously inserted into the plasma membrane, but there was no evidence of a local insertion at sites of new cluster formation. Concanavalin A (Con A) at a concentration of 100 micrograms/ml caused a fivefold decrease in the fraction of mobile AChRs and a large decrease in their diffusion coefficient. Pretreatment of cells with Con A suppressed clustering of preexisting AChRs, but left intact the contribution of the mobile newly inserted AChRs. Succinyl Con A, the divalent derivative of Con A which affected the mobility to a much less extent than Con A, had little effect on the clustering process. These results show that the formation of AChR clusters in Xenopus is mediated by lateral migration of AChRs within the plasma membrane and are consistent with the diffusion-trap hypothesis, which depicts freely diffusing AChR aggregating at the bead-muscle contacts where they bind to other localized molecular specializations induced by the beads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号