首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The vitamin B12 (B12)-mediated repression of the metE gene in Escherichia coli and Salmonella typhimurium requires the B12-dependent transmethylase, the metH gene product. It has been proposed that the MetH-B12 holoenzyme complex is involved directly in the repression mechanism. Using Escherichia coli strains lysogenized with a lambda phage carrying a metE-lacZ gene fusion, we examined B12-mediated repression of the metE-lacZ gene fusion. Although B12 supplementation results in a 10-fold repression of metE-lacZ expression, homocysteine addition to the growth medium overrides the B12-mediated repression. In addition, B12-mediated repression of the metE-lacZ fusion is dependent on a functional MetR protein. When a metB mutant was transformed with a high-copy-number plasmid carrying the metE gene, which would be expected to reduce intracellular levels of homocysteine, metE-lacZ expression was reduced and B12 supplementation had no further effect. In a metJ mutant, B12 represses metE-lacZ expression less than twofold. When the metJ mutant was transformed with a high-copy-number plasmid carrying the metH gene, which would be expected to reduce intracellular levels of homocysteine, B12 repression of the metE-lacZ fusion was partially restored. The results indicate that B12-mediated repression of the metE gene is primarily a loss of MetR-mediated activation due to depletion of the coactivator homocysteine, rather than a direct repression by the MetH-B12 holoenzyme.  相似文献   

3.
4.
The involvement of an outer membrane transport component for vitamin B12 uptake in Salmonella typhimurium, analogous to the btuB product in Escherichia coli, was investigated. Mutants of S. typhimurium selected for resistance to bacteriophage BF23 carried mutations at the btuB locus (butBS) (formerly called bfe, at the analogous map position as the E. coli homolog) and were defective in high-affinity vitamin B12 uptake. The cloned E. coli btuB gene (btuBE) hybridized to S. typhimurium genomic DNA and restored vitamin B12 transport activity to S. typhimurium btuBS mutants. An Mr-60,000 protein in the S. typhimurium outer membrane was repressed by growth with vitamin B12 and was eliminated in a btuBS mutant. The btuBS product thus appears to play the same role in vitamin B12 transport by S. typhimurium as does the E. coli btuBE product. A second vitamin B12 transport system that is not present in E. coli was found by cloning a fragment of S. typhimurium DNA that complemented btuB mutants for vitamin B12 utilization. In addition to this plasmid with a 6-kilobase insert of S. typhimurium DNA, vitamin B12 utilization by E. coli btuB strains required the btuC and btuD products, necessary for transport across the cytoplasmic membrane, but not the btuE or tonB product. The plasmid conferred low levels of vitamin B12-binding and energy-dependent transport activity but not susceptibility to phage BF23 or utilization of dicyanocobinamide. The cloned S. typhimurium DNA encoding this new transport system did not hybridize to the btuBE gene or to E. coli chromosomal DNA and therefore does not carry the S. typhimurium btuBS locus. Increased production of an Mr -84,000 polypeptide associated with the outer membrane was seen. The new locus appears to be carried on the large plasmid in most S. typhimurium strains. Thus S. typhimurium possesses both high- and low-affinity systems for uptake of cobalamins across the outer membrane.  相似文献   

5.
6.
Methionine genes and enzymes of Salmonella typhimurium   总被引:14,自引:0,他引:14  
D A Smith  J D Childs 《Heredity》1966,21(2):265-286
  相似文献   

7.
Salmonella typhimurium synthesizes cobalamin (vitamin B12) de novo under anaerobic conditions. Of the 30 cobalamin synthetic genes, 25 are clustered in one operon, cob, and are arranged in three groups, each group encoding enzymes for a biochemically distinct portion of the biosynthetic pathway. We have determined the DNA sequence for the promoter region and the proximal 17.1 kb of the cob operon. This sequence includes 20 translationally coupled genes that encode the enzymes involved in parts I and III of the cobalamin biosynthetic pathway. A comparison of these genes with the cobalamin synthetic genes from Pseudomonas denitrificans allows assignment of likely functions to 12 of the 20 sequenced Salmonella genes. Three additional Salmonella genes encode proteins likely to be involved in the transport of cobalt, a component of vitamin B12. However, not all Salmonella and Pseudomonas cobalamin synthetic genes have apparent homologs in the other species. These differences suggest that the cobalamin biosynthetic pathways differ between the two organisms. The evolution of these genes and their chromosomal positions is discussed.  相似文献   

8.
New Methionine Structural Gene in Salmonella typhimurium   总被引:6,自引:4,他引:2       下载免费PDF全文
Eight metH mutants in Salmonella typhimurium with closely linked sites of mutation which could grow only on methionine were isolated from a metE mutant deficient in N(5)-methyltetrahydropteroyltriglutamate-homocysteine transmethylase; their deficiency in cobalamin-dependent N(5)-methyltetrahydrofolate-homocysteine transmethylase was supported by the results of enzyme studies of one of them. Cotransduction of metH and metA (homoserine O-transsuccinylase) mutants was obtained, thus revealing linkage between a second pair of the six known methionine structural genes. One metH mutant clearly differed from the rest in that it reverted at a higher frequency, was temperature sensitive, complemented all other metH mutants, and was located farthest from the metA gene.  相似文献   

9.
Methionine synthesis by extracts of Salmonella typhimurium   总被引:14,自引:4,他引:14       下载免费PDF全文
1. Following the genetic studies by Smith (1961) and Smith & Childs (1963) with methionine auxotrophs of Salmonella typhimurium, methionine formation from homocysteine has been investigated with cell-free extracts of this organism. 2. As found with Escherichia coli (Woods, Foster & Guest, 1964), methyl groups are formed by an N(5)N(10)-methylenetetrahydrofolate reductase. They are then transferred to homocysteine by either a simple N(5)-methyltetrahydropteroyl-triglutamate-homocysteine methyltransferase or alternatively a cobalamin-dependent N(5)-methyltetrahydrofolate-homocysteine methyltransferase. 3. S. typhimurium differs from E. coli in being able to synthesize significant amounts of cobalamin.  相似文献   

10.
The role of cbiK, a gene found encoded within the Salmonella typhimurium cob operon, has been investigated by studying its in vivo function in Escherichia coli. First, it was found that cbiK is not required for cobalamin biosynthesis in the presence of a genomic cysG gene (encoding siroheme synthase) background. Second, in the absence of a genomic cysG gene, cobalamin biosynthesis in E. coli was found to be dependent upon the presence of cobA(P. denitrificans) (encoding the uroporphyrinogen III methyltransferase from Pseudomonas denitrificans) and cbiK. Third, complementation of the cysteine auxotrophy of the E. coli cysG deletion strain 302delta a could be attained by the combined presence of cobA(P. denitrificans) and the S. typhimurium cbiK gene. Collectively these results suggest that CbiK can function in fashion analogous to that of the N-terminal domain of CysG (CysG(B)), which catalyzes the final two steps in siroheme synthesis, i.e., NAD-dependent dehydrogenation of precorrin-2 to sirohydrochlorin and ferrochelation. Thus, phenotypically CysG(B) and CbiK have very similar properties in vivo, although the two proteins do not have any sequence similarity. In comparison to CysG, CbiK appears to have a greater affinity for Co2+ than for Fe2+, and it is likely that cbiK encodes an enzyme whose primary role is that of a cobalt chelatase in corrin biosynthesis.  相似文献   

11.
12.
A detailed deletion map of the CobII and CobIII regions of the cobalamin biosynthetic (cob) operon of Salmonella typhimurium LT2 has been constructed. The CobII region encodes functions needed for the synthesis of lower ligand 5,6-dimethylbenzimidazole (DMB); CobIII encodes functions needed for the synthesis of the nucleotide loop that joins DMB to the corrin macrocycle. The genetic analysis of 117 deletion, insertion, and point mutations indicates that (i) the CobII and CobIII mutations are contiguous--that is, they are grouped according to function; (ii) the CobII region is composed of four complementation groups (cobJKLM); (iii) cobM mutations do not complement mutations in any of the other three CobII groups; and (iv) CobIII mutations include three complementation groups that correspond to the cobU, cobS, and cobT genes.  相似文献   

13.
In this paper, we report that the enteric bacterium Salmonella typhimurium synthesized cobalamin de novo under anaerobic culture conditions. Aerobically, metE mutants of S. typhimurium need either methionine or cobalamin as a nutritional supplement for growth. The growth response to cobalamin depends upon a cobalamin-requiring enzyme, encoded by the gene metH, that catalyzes the same reaction as the metE enzyme. Anaerobically, metE mutants grew without any nutritional supplements; the metH enzyme functioned under these conditions due to the endogenous biosynthesis of cobalamin. This conclusion was confirmed by using a radiochemical assay to measure cobalamin production. Insertion mutants defective in cobalamin biosynthesis (designated cob) were isolated in the three major branches of the cobalamin biosynthetic pathway. Type I mutations blocked the synthesis of cobinamide, type II mutations blocked the synthesis of 5,6-dimethylbenzimidazole, and type III mutations blocked the synthesis of cobalamin from cobinamide and 5,6-dimethylbanzimidazole. Mutants that did not synthesize siroheme (cysG) were blocked in cobalamin synthesis. Genetic mapping experiments showed that the cob mutations are clustered in the region of the S. typhimurium chromosome between supD (40 map units) and his (42 map units). The discovery that S. typhimurium synthesizes cobalamin de novo only under anaerobic conditions raises the possibility that anaerobically grown cells possess a variety of enzymes which are dependent upon cobalamin as a cofactor.  相似文献   

14.
Oxygen regulation in Salmonella typhimurium   总被引:14,自引:22,他引:14       下载免费PDF全文
Regulation by oxygen of the peptidase T (pepT) locus of Salmonella typhimurium was studied by measuring beta-galactosidase levels in strains containing a pepT::Mu d1(Apr lac) operon fusion. beta-Galactosidase was induced in anaerobic cultures and late-exponential and stationary-phase aerated cultures. Peptidase T activity also was induced under these growth conditions. pepT+ but not pepT strains will utilize as amino acid sources the tripeptides Leu-Leu-Leu and Leu-Gly-Gly only when grown anaerobically. Mutations at two loci, oxrA and oxrB (oxygen regulation) prevent induction of the pepT locus. The oxrA locus is homologous to the fnr locus of Escherichia coli. We have isolated 12 independent Mu d1 insertions (oxd::Mu d1, oxygen dependent) that show induction of beta-galactosidase in anaerobic cultures and stationary-phase aerated cultures. These insertions fall into nine classes based on map location. All of the oxd::Mu d1 insertions are regulated by oxrA and oxrB and therefore define a global regulon that responds to oxygen limitation.  相似文献   

15.
Salmonella typhimurium LT2 concentrates radioactivity intracellularly from [3H]pyridoxal or [3H]pyridoxine up to 25 times the external concentration. After 1 min of uptake intracellular radioactivity is found as phosphorylated vitamin B6. The process is sensitive to temperature and is maximally active at pH 8.1, but under the conditions tested it is insensitive to monovalent cations or metabolic inhibitors, and does not require an exogenous energy source. The Km values for uptake of pyridoxine and pyridoxal are 2.0 x 10(-7) M and 1.2 x 10(-7) M, respectively; [3H]pyridoxamine is not transported. Evidence is presented for an uptake mechanism involving facilitated diffusion followed by trapping by pyridoxal kinase. S. typhimurium also appears to lack a periplasmic binding protein for vitamin B6.  相似文献   

16.
17.
Abstract The cob operon in Salmonella typhimurium encodes 25 proteins involved in the biosynthesis of cobalamin. Expression of the cob operon is negatively feedback regulated by cobalamin via a translational control mechanism. The concentration of cobalamin required to repress cob expression to half-maximal was determined in vivo and in vitro to 0.4 μM and 0.6 μM, respectively. These results suggest that cob expression in wild-type cells is partially repressed by de novo synthesized cobalamin.  相似文献   

18.
19.
20.
Methionine sulfoximine inhibits the growth of Salmonella typhimurium at a concentration of 50 muM, and the addition of glutamine, but not glutamate, is sufficient to overcome this inhibition. The analogue causes 50% inhibition of glutamine synthetase activity at 2 to 4 muM and of glutamate synthase at 2 to 3 mM when these enzymes are assayed in vitro. No inhibition of glutamate dehydrogenase activity is observed at analogue concentrations as high as 50 mM. Two mutants selected for their resistance to methionine sulfoximine inhibition have a partial growth requirement for glutamine and a reduction in the glutamine synthetase and glutamate synthase activities. The sensitivity of the remaining glutamine synthetase activity in these mutants to methionine sulfoximine inhibition appears unaltered, and the lesions conferring the analogue resistance may not affect glutamine synthetase directly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号