首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteriolytic enzymes often possess a C‐terminal binding domain that recognizes specific motifs on the bacterial surface and a catalytic domain that cleaves covalent linkages within the cell wall peptidoglycan. PlyPH, one such lytic enzyme of bacteriophage origin, has been reported to be highly effective against Bacillus anthracis, and can kill up to 99.99% of the viable bacteria. The bactericidal activity of this enzyme, however, appears to be strongly dependent on the age of the bacterial culture. Although highly bactericidal against cells in the early exponential phase, the enzyme is substantially less effective against stationary phase cells, thus limiting its application in real‐world settings. We hypothesized that the binding domain of PlyPH may differ in affinity to cells in different Bacillus growth stages and may be primarily responsible for the age‐restricted activity. We therefore employed an in silico approach to identify phage lysins differing in their specificity for the bacterial cell wall. Specifically we focused our attention on Plyβ, an enzyme with improved cell wall‐binding ability and age‐independent bactericidal activity. Although PlyPH and Plyβ have dissimilar binding domains, their catalytic domains are highly homologous. We characterized the biocatalytic mechanism of Plyβ by identifying the specific bonds cleaved within the cell wall peptidoglycan. Our results provide an example of the diversity of phage endolysins and the opportunity for these biocatalysts to be used for broad‐based protection from bacterial pathogens. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1487–1493, 2015  相似文献   

2.
Nonproteolytic, avirulent Bacillus anthracis as a live vaccine   总被引:1,自引:0,他引:1  
Fubra, Ernest S. (Federal Department of Veterinary Research, Vom, Nigeria). Nonproteolytic, avirulent Bacillus anthracis as a live vaccine. J. Bacteriol. 91:930-933. 1966.-A nonproteolytic mutant, derived from the Sterne strain of Bacillus anthracis by exposure to ultraviolet radiation, was used for vaccination of guinea pigs. Vaccine prepared from the parent Sterne strain was used in comparable immunization procedure. Comparison of the protection induced by the two vaccines showed that use of the nonproteolytic mutant was from 10 to 1,000 times as effective as the Sterne strain.  相似文献   

3.
Bacterial endospore dormancy and resistance properties depend on the relative dehydration of the spore core, which is maintained by the spore membrane and its surrounding cortex peptidoglycan wall. During spore germination, the cortex peptidoglycan is rapidly hydrolyzed by lytic enzymes packaged into the dormant spore. The peptidoglycan structures in both dormant and germinating Bacillus anthracis Sterne spores were analyzed. The B. anthracis dormant spore peptidoglycan was similar to that found in other species. During germination, B. anthracis released peptidoglycan fragments into the surrounding medium more quickly than some other species. A major lytic enzymatic activity was a glucosaminidase, probably YaaH, that cleaved between N-acetylglucosamine and muramic-delta-lactam. An epimerase activity previously proposed to function on spore peptidoglycan was not detected, and it is proposed that glucosaminidase products were previously misidentified as epimerase products. Spore cortex lytic enzymes and their regulators are attractive targets for development of germination inhibitors to kill spores and for development of activators to cause loss of resistance properties for decontamination of spore release sites.  相似文献   

4.
Lytic proteins encoded by bacterial genomes have been implicated in cell wall biosynthesis and recycling. The Bacillus cereus E33L ampD gene encodes a putative N-acetylmuramoyl-l-alanine amidase. This gene, expressed in vitro, produced a very stable, highly active lytic protein. Very low concentrations rapidly and efficiently lyse vegetative Bacillus anthracis cells.  相似文献   

5.
In vivo induced antigen technology (IVIAT) is an immuno-screening technique that identifies bacterial antigens expressed during infection and not during standard in vitro culturing conditions. We applied IVIAT to Bacillus anthracis and identified PagA, seven members of a N-acetylmuramoyl-L-alanine amidase autolysin family, three P60 family lipoproteins, two transporters, spore cortex lytic protein SleB, a penicillin binding protein, a putative prophage holin, respiratory nitrate reductase NarG, and three proteins of unknown function. Using quantitative real-time PCR comparing RNA isolated from in vitro cultured B. anthracis to RNA isolated from BALB/c mice infected with virulent Ames strain B. anthracis, we confirmed induced expression in vivo for a subset of B. anthracis genes identified by IVIAT, including L-alanine amidases BA3767, BA4073, and amiA (pXO2-42); the bacteriophage holin gene BA4074; and pagA (pXO1-110). The exogenous addition of two purified putative autolysins identified by IVIAT, N-acetylmuramoyl-L-alanine amidases BA0485 and BA2446, to vegetative B. anthracis cell suspensions induced a species-specific change in bacterial morphology and reduction in viable bacterial cells. Many of the proteins identified in our screen are predicted to affect peptidoglycan re-modeling, and our results support significant cell wall structural remodeling activity during B. anthracis infection. Identification of L-alanine amidases with B. anthracis specificity may suggest new potential therapeutic targets.  相似文献   

6.
7.
Bacillus anthracis, a gram-positive, spore-forming bacterium, is the etiological agent of anthrax. It belongs to the Bacillus cereus group, which also contains Bacillus cereus and Bacillus thuringiensis. Most B. anthracis strains are sensitive to phage gamma, but most B. cereus and B. thuringiensis strains are resistant to the lytic action of phage gamma. Here, we report the identification of a protein involved in the bacterial receptor for the gamma phage, which we term GamR (Gamma phage receptor). It is an LPXTG protein (BA3367, BAS3121) and is anchored by the sortase A. A B. anthracis sortase A mutant is not as sensitive as the parental strain nor as the sortase B and sortase C mutants, whereas the GamR mutant is resistant to the lytic action of the phage. Electron microscopy reveals the binding of the phage to the surface of the parental strain and its absence from the GamR mutant. Spontaneous B. anthracis mutants resistant to the phage harbor mutations in the gene encoding the GamR protein. A B. cereus strain that is sensitive to the phage possesses a protein similar (89% identity) to GamR. B. thuringiensis 97-27, a strain which, by sequence analysis, is predicted to harbor a GamR-like protein, is resistant to the phage but nevertheless displays phage binding.  相似文献   

8.
9.
The Bacillus anthracis endospore loses resistance properties during germination when its cortex peptidoglycan is degraded by germination-specific lytic enzymes (GSLEs). Although this event normally employs several GSLEs for complete cortex removal, the SleB protein alone can facilitate enough cortex hydrolysis to produce vulnerable spores. As a means to better understand its enzymatic function, SleB was overexpressed, purified, and tested in vitro for depolymerization of cortex by measurement of optical density loss and the solubilization of substrate. Its ability to bind peptidoglycan was also investigated. SleB functions independently as a lytic transglycosylase on both intact and fragmented cortex. Most of the muropeptide products that SleB generates are large and are potential substrates for other GSLEs present in the spore. Study of a truncated protein revealed that SleB has two domains. The N-terminal domain is required for stable peptidoglycan binding, while the C-terminal domain is the region of peptidoglycan hydrolytic activity. The C-terminal domain also exhibits dependence on cortex containing muramic-δ-lactam in order to carry out hydrolysis. As the conditions and limitations for SleB activity are further elucidated, they will enable the development of treatments that stimulate premature germination of B. anthracis spores, greatly simplifying decontamination measures.  相似文献   

10.
Cell walls of Bacillus anthracis were found to be resistant to lysozyme, and partially resistant to mutanolysin, a muramidase from Streptomyces globisporus. Following treatment with acetic anhydride, it was observed that the walls were highly susceptible to hydrolysis by lysozyme or mutanolysin. Analyses of cell walls, prior to and following derivatization with fluorodinitrobenzene, revealed that approximately 88% of the glucosamine residues and 34% of the muramic acid residues of the peptidoglycan contained unsubstituted amino groups, thereby providing an explanation for the resistance of the walls to lysozyme. The walls of B. anthracis were approximately 19% cross-linked, based on the findings that 81% of the diaminopimelic acid residues could be modified by fluorodinitrobenzene. Walls of B. thuringiensis 4040 and B. cereus ATCC 19637 also contained high percentages of unsubstituted amino sugars, and unless acetylated, were also relatively resistant to lysozyme and mutanolysin. When B. anthracis, B. cereus, or B. thuringiensis were grown in the presence of 100 micrograms/mL lysozyme, there was a decrease in the average number of cells per chain, but there was no decrease in growth rates, suggesting that the enzyme was acting at septa. It is unlikely that lysozyme and autolysins act synergistically in Bacillus, because azide anion, which activates autolysins, did not enhance the lytic action of lysozyme in B. anthracis, B. cereus, or B. thuringiensis.  相似文献   

11.
Bacillus anthracis, the causative agent of anthrax, utilizes hemin and hemoglobin for growth in culture, suggesting that these host molecules serve as sources for the nutrient iron during bacterial infection. Bioinformatic analyses of the B. anthracis genome revealed genes with similarity to the iron-regulated surface determinant (isd) system responsible for heme uptake in Staphylococcus aureus. We show that the protein product of one of these genes, isdG, binds hemin in a manner resembling the heme binding of known heme oxygenases. Formation of IsdG:hemin complexes in the presence of a suitable electron donor, e.g., ascorbate or cytochrome P450 reductase, promotes catalytic degradation of hemin to biliverdin with concomitant release of iron. IsdG is required for B. anthracis utilization of hemin as a sole iron source, and it is also necessary for bacterial protection against heme-mediated toxicity. These data suggest that IsdG functions as a heme-degrading monooxygenase in B. anthracis.  相似文献   

12.
The potential use of Bacillus anthracis as a weapon of mass destruction poses a threat to humans, domesticated animals, and wildlife and necessitates the need for a rapid and highly specific detection assay. We have developed a real-time PCR-based assay for the specific detection of B. anthracis by taking advantage of the unique nucleotide sequence of the B. anthracis rpoB gene. Variable region 1 of the rpoB gene was sequenced from 36 Bacillus strains, including 16 B. anthracis strains and 20 other related bacilli, and four nucleotides specific for B. anthracis were identified. PCR primers were selected so that two B. anthracis-specific nucleotides were at their 3' ends, whereas the remaining bases were specific to the probe region. This format permitted the PCR reactions to be performed on a LightCycler via fluorescence resonance energy transfer (FRET). The assay was found to be specific for 144 B. anthracis strains from different geographical locations and did not cross-react with other related bacilli (175 strains), with the exception of one strain. The PCR assay can be performed on isolated DNA as well as crude vegetative cell lysates in less than 1 h. Therefore, the rpoB-FRET assay could be used as a new chromosomal marker for rapid detection of B. anthracis.  相似文献   

13.
Single nucleotide polymorphisms (SNPs) are increasingly recognized as important diagnostic markers for the detection and differentiation of Bacillus anthracis. The use of SNP markers for identifying B. anthracis DNA in environmental samples containing genetically similar bacteria requires the ability to amplify and detect DNA with single nucleotide specificity. We designed a TaqMan mismatch amplification mutation assay (TaqMAMA) around a SNP in the plcR gene of B. anthracis. The assay permits specific, low-level detection (25 fg DNA) of this B. anthracis-specific SNP, even in the presence of environmental DNA extracts containing a 20,000-fold excess of the alternate allele. We anticipate that the ability to selectively amplify and detect low copy number DNAs with single nucleotide specificity will represent a valuable tool in the arena of biodefense and microbial forensics.  相似文献   

14.
EA1 is an abundant, highly antigenic, surface layer protein of Bacillus anthracis vegetative cells. Recent studies indicate that EA1 is also a component of B. anthracis spores and a potential marker for spore detection. We show here that EA1 is not a spore component but a persistent contaminant in spore preparations.  相似文献   

15.
Currently available detectors for spores of Bacillus anthracis, the causative agent of anthrax, are inadequate for frontline use and general monitoring. There is a critical need for simple, rugged, and inexpensive detectors capable of accurate and direct identification of B. anthracis spores. Necessary components in such detectors are stable ligands that bind tightly and specifically to target spores. By screening a phage display peptide library, we identified a family of peptides, with the consensus sequence TYPXPXR, that bind selectively to B. anthracis spores. We extended this work by identifying a peptide variant, ATYPLPIR, with enhanced ability to bind to B. anthracis spores and an additional peptide, SLLPGLP, that preferentially binds to spores of species phylogenetically similar to, but distinct from, B. anthracis. These two peptides were used in tandem in simple assays to rapidly and unambiguously identify B. anthracis spores. We envision that these peptides can be used as sensors in economical and portable B. anthracis spore detectors that are essentially free of false-positive signals due to other environmental Bacillus spores.  相似文献   

16.
Bacillus anthracis , the causative agent of anthrax, is a dangerous biological weapon, as spores derived from drug-resistant strains cause infections for which antibiotic therapy is no longer effective. We sought to develop an anti-infective therapy for anthrax and targeted CapD, an enzyme that cleaves poly-γ- d -glutamate capsule and generates amide bonds with peptidoglycan cross-bridges to deposit capsular material into the envelope of B. anthracis . In agreement with the model that capsule confers protection from phagocytic clearance, B. anthracis capD variants failed to deposit capsule into the envelope and displayed defects in anthrax pathogenesis. By screening chemical libraries, we identified the CapD inhibitor capsidin, 4-[(4-bromophenyl)thio]-3-(diacetylamino)benzoic acid), which covalently modifies the active-site threonine of the transpeptidase. Capsidin treatment blocked capsular assembly by B. anthracis and enabled phagocytic killing of non-encapsulated vegetative forms.  相似文献   

17.
We identified a tri-cistronic operon, gerH, in Bacillus anthracis that is important for endospore germination triggered by two distinct germination response pathways termed inosine-His and purine-Ala. Together, the two pathways allow B. anthracis endospores a broader recognition of purines and amino acids that may be important for host-mediated germination.  相似文献   

18.
Anthrax toxins and the host: a story of intimacy   总被引:4,自引:0,他引:4  
Although the dramatic events of the year 2001 have revitalized the interest in anthrax, research on Bacillus anthracis and its major virulence factors is one of the oldest theme in microbiology and started with the early works of Robert Koch and Louis Pasteur. The anthrax toxins are central to anthrax pathogenesis. They were discovered in the mid-1950s and since then there has been an enormous amount of work to elucidate both the molecular and physiopathological details of their mode of action. In this review, after a brief introduction of B. anthracis, we will focus on the latest findings that concern two aspects of anthrax toxin research: the environmental signals and the molecular mechanisms that regulate toxin synthesis, and the mechanisms of intoxication. We hope to convince the reader that the anthrax toxins are highly specialized determinants of B. anthracis pathogenicity: their synthesis is integrated within a global virulence programme and they target key eukaryotic cell proteins. We conclude with a consideration of the therapeutic perspectives arising from our current knowledge of how the toxins work.  相似文献   

19.
The Gram-positive pathogen Bacillus anthracis causes anthrax, a fulminant and lethal infection of mammals. Two large virulence plasmids, pXO1 and pXO2, harbour genes required for anthrax pathogenesis and encode secreted toxins or provide for the poly γ- d -glutamic acid capsule. In addition to capsule, B. anthracis harbours additional cell wall envelope structures, including the surface layer (S-layer), which is composed of crystalline protein arrays. We sought to identify the B. anthracis envelope factor that mediates adherence of vegetative forms to human cells and isolated BslA ( B . anthracis S - l ayer protein A ). Its structural gene, bslA , is located on the pXO1 pathogenicity island (pXO1-90) and bslA expression is both necessary and sufficient for adherence of vegetative forms to host cells. BslA assembly into S-layers and surface exposure is presumably mediated by three N-terminal SLH domains. Twenty-three B. anthracis genes, whose products harbour similar SLH domains, may provide additional surface molecules that allow bacilli to engage cells or tissues of specific hosts during anthrax pathogenesis.  相似文献   

20.
The genetic distribution of 295 Bacillus cereus group members has been investigated by using a modified Multilocus Sequence Typing method (MLST). By comparing the nucleic acid sequence of the adk gene fragment, isolates of B. cereus group members most related to B. anthracis may be easily identified. The genetic distribution, with focus on the B. anthracis close neighbours, was used to evaluate a new primer set for specific identification of B. anthracis. This primer set, BA5510-1/2, targeted the putative B. anthracis specific gene BA5510. Real-time PCR using BA5510-1/2 amplified the target fragment from all B. anthracis strains tested and only two (of 289) non-B. anthracis strains analysed. This is one of the most thoroughly validated chromosomal B. anthracis markers for real-time PCR identification, in which the screened collection contained several very closely related B. anthracis strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号