共查询到20条相似文献,搜索用时 0 毫秒
1.
Locusts respond to the images of approaching (looming) objects with responses that include gliding while in flight and jumping while standing. For both of these responses there is good evidence that the DCMD neuron (descending contralateral movement detector), which carries spike trains from the brain to the thoracic ganglia, is involved. Sudden glides during flight, which cause a rapid loss of height, are last-chance manoeuvres without prior preparation. Jumps from standing require preparation over several tens of milliseconds because of the need to store muscle-derived energy in a catapult-like mechanism. Locusts’ DCMD neurons respond selectively to looming stimuli, and make connections with some motor neurons and interneurons known to be involved in flying and jumping. For glides, a burst of high-frequency DCMD spikes is a key trigger. For jumping, a similar burst can influence timing, but neither the DCMD nor any other single interneuron has been shown to be essential for triggering any stage in preparation or take-off. Responses by the DCMD to looming stimuli can alter in different behavioural contexts: in a flying locust, arousal ensures a high level of both DCMD responsiveness and glide occurrence; and there are significant differences in DCMD activity between locusts in the gregarious and the solitarious phase. 相似文献
2.
A. P. Willmott C. P. Ellington A. L. R. Thomas 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》1997,352(1351):303-316
The aerodynamic mechanisms employed durng the flight of the hawkmoth, Manduca sexta, have been investigated through smoke visualization studies with tethered moths. Details of the flow around the wings and of the overall wake structure were recorded as stereophotographs and high-speed video sequences. The changes in flow which accompanied increases in flight speed from 0.4 to 5.7 m s-1 were analysed. The wake consists of an alternating series of horizontal and vertical vortex rings which are generated by successive down- and upstrokes, respectively. The downstroke produces significantly more lift than the upstroke due to a leading-edge vortex which is stabilized by a radia flow moving out towards the wingtip. The leading-edge vortex grew in size with increasing forward flight velocity. Such a phenomenon is proposed as a likely mechanism for lift enhancement in many insect groups. During supination, vorticity is shed from the leading edge as postulated in the ''flex'' mechanism. This vorticity would enhance upstroke lift if it was recaptured diring subsequent translation, but it is not. Instead, the vorticity is left behind and the upstroke circulation builds up slowly. A small jet provides additional thrust as the trailing edges approach at the end of the upstroke. The stereophotographs also suggest that the bound circulation may not be reversed between half strokes at the fastest flight speeds. 相似文献
3.
G. Wendler M. Müller U. Dombrowski 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1993,173(1):65-75
In the moth Manduca sexta, the paired mesothoracic flight steering muscle II PD2m takes part in the generation of the flight rhythm and is spontaneously active in the non-flying animal. This spontaneous activity is modulated by optomotor stimuli and directionally selective. The directional response characteristics are analyzed. Another spontaneously active steering muscle pair, the III PD2c, is situated in the metathorax. The activities of this pair and of a third muscle pair, the III PD3 are also influenced by visual stimulation.The responses of all 6 muscles to optomotor stimuli which simulate the flight situations yaw, roll, thrust and lift are analyzed. Each situation elicits a unique pattern of activation/deactivation within this set of muscles. The activity pattern in non-flying animals allows the prediction of flight steering mechanisms such as changes of wing area in flight turns and provides a useful basis for the analysis of visuo-motor pathways. 相似文献
4.
C. van den Berg C.P. Ellington 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》1997,352(1351):329
Recent flow visualisation experiments with the hawkmoth, Manduca sexta, revealed small but clear leading-edge vortex and a pronounced three-dimensional flow. Details of this flow pattern were studied with a scaled-up, robotic insect (''the flapper'') that accurately mimicked the wing movements of a hovering hawkmoth. Smoke released from the leading edge of the flapper wing confirmed the existence of a small, strong and stable leading-edge vortex, increasing in size from wingbase to wingtip. Between 25 and 75 per cent of the wing length, its diameter increased approximately from 10 to 50 per cent of the wing chord. The leading-edge vortex had a strong axial flow veolocity, which stabilized it and reduced its diamater. The vortex separated from the wing at approximately 75 per cent of the wing length and thus fed vorticity into a large, tangled tip vortex. If the circulation of the leading-edge vortex were fully used for lift generation, it could support up to two-thirds of the hawkmoth''s weight during the downstroke. The growth of this circulation with time and spanwise position clearly identify dynamic stall as the unsteady aerodynamic mechanism responsible for high lift production by hovering hawkmoths and possibly also by many other insect species. 相似文献
5.
Maurice Meseke Jan Felix Evers Carsten Duch 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2009,195(5):473-489
During the metamorphosis of the holometabolous insect, Manduca sexta, the postembryonic acquisition of adult specific motor behaviors is accompanied by changes in dendritic architecture, membrane currents, and input synapses of identified motoneurons. This study aims to test whether increased activity affects dendritic architecture and sub-dendritic input synapse distribution of the identified flight motoneuron 5 (MN5). Systemic injections of the chloride channel blocker, picrotoxin (PTX), during early pupal stages increase pupal reflex responsiveness, but overall development is not impaired. MN5 input resistance, resting membrane potential, and spiking threshold are not affected. Bath application of PTX to isolated ventral nerve cords evokes spiking in pupal and adult flight motoneurons. Quantitative three-dimensional reconstructions of the dendritic tree of the adult MN5 show that systemic PTX injections into early pupae cause dendritic overgrowth and reduce the density of GABAergic inputs. In contrast, the distribution patterns of GABAergic terminals throughout the dendritic tree remain unaltered. This indicates that increased overall excitability might cause dendritic overgrowth and decreased inhibitory input during postembryonic motoneuron remodeling, whereas sub-dendritic synapse targeting might be controlled by activity-independent signals. Behavioral testing reveals that these neuronal changes do not impede the animal’s ability to fly, but impair maximum flight performance. 相似文献
6.
J. R. Gray R. M. Robertson 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1994,175(4):425-435
Maturation of the flight system of Locusta migratoria occurs during the first two weeks following imaginal ecdysis. One aspect of maturation is an increase in the wingbeat frequency from about 13 Hz to about 23 Hz. We investigated physiological and anatomical mechanisms that may contribute to this process. The difference between the frequencies of the central flight rhythms of immature and mature deafferented preparations was not as great as that between the wingbeat frequencies of immature and mature intact animals. Results from static and dynamic wing elevation showed that the intensity of the forewing stretch receptor response to a given stimulus increased during maturation. The diameter of the main stretch receptor axon was larger and the conduction velocity of signals conveyed along the forewing stretch receptor and the dorsal longitudinal motoneuron was faster in mature than in immature animals. We conclude that during maturation of the flight system the forewing stretch receptor responds to wing elevation with a higher frequency signal that reaches the central circuitry faster. These findings are discussed in the context of a model that describes the influence of stretch receptor input on wingbeat frequency along with other potential mechanisms involved in flight maturation.Abbreviations fDLMn
forewing dorsal longitudinal motoneuron
- fSR
forewing stretch receptor
- SR
stretch receptor 相似文献
7.
C. van den Berg C. P. Ellington 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》1997,352(1351):317-328
Visualization experiments with Manduca sexta have revealed the presence of a leading-edge vortex and a highly three-dimensional flow pattern. To further investigate this important discovery, a scaled-up robotic insect was built (the ''flapper'') which could mimic the complex movements of the wings of a hovering hawkmoth. Smoke released from the leading edge of the flapper wing revealed a small but strong leading-edge vortex on the downstroke. This vortex had a high axial flow velocity and was stable, separating from the wing at approximately 75 per cent of the wing length. It connected to a large, tangled tip vortex, extending back to a combining stopping and starting vortex from pronation. At the end of the downstroke, the wake could be approximated as one vortex ring per wing. Based on the size and velocity of the vortex rings, the mean lift force during the downstroke was estimated to be about 1.5 times the body weight of a hawkmoth, confirming that the downstroke is the main provider of lift force. 相似文献
8.
R. Vierk H. J. Pflueger C. Duch 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2009,195(3):265-277
The biogenic amine, octopamine, modulates a variety of aspects of insect motor behavior, including direct action on the flight
central pattern generator. A number of recent studies demonstrate that tyramine, the biological precursor of octopamine, also
affects invertebrate locomotor behaviors, including insect flight. However, it is not clear whether the central pattern generating
networks are directly affected by both amines, octopamine and tyramine. In this study, we tested whether tyramine affected
the central pattern generator for flight in the moth, Manduca sexta. Fictive flight was induced in an isolated ventral nerve cord preparation by bath application of the octopamine agonist,
chlordimeform, to test potential effects of tyramine on the flight central pattern generator by pharmacological manipulations.
The results demonstrate that octopamine but not tyramine is sufficient to induce fictive flight in the isolated ventral nerve
cord. During chlordimeform induced fictive flight, bath application of tyramine selectively increases synaptic drive to depressor
motoneurons, increases the number of depressor spikes during each cycle and decreases the depressor phase. Conversely, blocking
tyramine receptors selectively reduces depressor motoneuron activity, but does not affect cycle by cycle elevator motoneuron
spiking. Therefore, octopamine and tyramine exert distinct effects on the flight central pattern generating network. 相似文献
9.
To determine whether perching dragonflies visually assess the distance to potential prey items, we presented artificial prey,
glass beads suspended from fine wires, to perching dragonflies in the field. We videotaped the responses of freely foraging
dragonflies (Libellula luctuosa and Sympetrum vicinum—Odonata, suborder Anisoptera) to beads ranging from 0.5 mm to 8 mm in diameter, recording whether or not the dragonflies
took off after the beads, and if so, at what distance. Our results indicated that dragonflies were highly selective for bead
size. Furthermore, the smaller Sympetrum preferred beads of smaller size and the larger Libellula preferred larger beads. Each species rejected beads as large or larger than their heads, even when the beads subtended the
same visual angles as the smaller, attractive beads. Since bead size cannot be determined without reference to distance, we
conclude that dragonflies are able to estimate the distance to potential prey items. The range over which they estimate distance
is about 1 m for the larger Libellula and 70 cm for the smaller Sympetrum. The mechanism of distance estimation is unknown, but it probably includes both stereopsis and the motion parallax produced
by head movements. 相似文献
10.
Activation phase ensures kinematic efficacy in flight-steering muscles of Drosophila melanogaster 总被引:1,自引:0,他引:1
F. O. Lehmann K. G. Götz 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1996,179(3):311-322
During tethered flight in Drosophila melanogaster, spike activity of the second basalar flight-control muscle (M.b2) is correlated with an increase in both the ipsilateral wing beat amplitude and the ipsilateral flight force. The frequency of muscle spikes within a burst is about 100 Hz, or 1 spike for every two wing beat cycles. When M.b2 is active, its spikes tend to occur within a comparatively narrow phase band of the wing beat cycle. To understand the functional role of this phase-lock of firing in the control of flight forces, we stimulated M.b2 in selected phases of the wing beat cycle and recorded the effect on the ipsilateral wing beat amplitude. Varying the phase timing of the stimulus had a significant effect on the wing beat amplitude. A maximum increase of wing beat amplitude was obtained by stimulating M.b2 at the beginning of the upstroke or about 1 ms prior to the narrow phase band in which the muscle spikes typically occur during flight. Assuming a delay of 1 ms between the stimulation of the motor nerve and muscle activation, these results indicate that M.b2 is activated at an instant of the stroke cycle that produces the greatest effect on wing beat amplitude. 相似文献
11.
R. M. Olberg A. H. Worthington K. R. Venator 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2000,186(2):155-162
Perching dragonflies (Libellulidae; Odonata) are sit-and-wait predators, which take off and pursue small flying insects. To investigate their prey pursuit strategy, we videotaped 36 prey-capture flights of male dragonflies, Erythemis simplicicollis and Leucorrhinia intacta, for frame-by-frame analysis. We found that dragonflies fly directly toward the point of prey interception by steering to minimize the movement of the prey's image on the retina. This behavior could be guided by target-selective descending interneurons which show directionally selective visual responses to small-object movement. We investigated how dragonflies discriminate distance of potential prey. We found a peak in angular velocity of the prey shortly before take-off which might cue the dragonfly to nearby flying targets. Parallax information from head movements was not required for successful prey pursuit. Accepted: 11 November 1999 相似文献
12.
M. Bartos H. W. Honegger 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1997,181(1):59-70
The change of the intensity of proctolin immunolabeling of 2 of 17 proctolinergic antennal motoneurons [one adductor (Ad3),
and one depressor (D5)] was quantitatively studied in crickets in relation to flight and antennal deafferentation. During
flight, the maintained forward position of the antennae is supported by high frequency tonic firing of Ad3 but probably all
motoneurons are activated. In animals sacrificed immediately after the last of five consecutive flight periods the intensity
of proctolin-like immunolabeling showed a significant decrease in the Ad3 soma in comparison to the Ad3 of non-flyers. The
identical result was observed in the D5 soma. In animals sacrificed 40 h after flight, no difference in the intensity of proctolin
immunolabeling between the Ad3 soma of flyers and non-flyers was evident. Thus, at high motoneuron activity, the production
of proctolin may not be able to keep pace with its transport from the soma. Deletion of all proprioceptors of one antenna
which respond to horizontal movements only led to a significant decrease of the intensity of proctolin immunolabeling in the
Ad3 soma on the operated side, but not in the soma of D5. This indicates that selected afferent input has an impact on proctolin
expression in distinct motoneuron pools.
Accepted: 7 February 1997 相似文献
13.
B. Möhl 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1993,172(3):325-332
In a muscle-specific flight simulator (simulator driven by muscle action potentials) locusts (Locusta migratoria) show motor learning by which steering performance of the closed-loop muscles is improved. The role of proprioceptive feedback for this motor learning has been studied. Closed-loop muscles were cut in order to disable proprioceptive feedback of their contractions. Since there are no proprioceptors within the muscles, this is a muscle-specific deafferentation. Cut muscles are still activated during flight and their action potentials can be used for controlling the flight simulator. With cut muscles in closed-loop, steering is less reliable as can be seen from the frequent oscillations of the yaw angle. However, periods of stable flight indicate that deafferented muscles are still, in principle, functional for steering. Open-loop yaw stimuli reveal that steering reactions in cut muscles are weaker and have a longer delay than intact muscles. This is responsible for the oscillations observed in closed-loop flight. Intact muscles can take over from cut muscles in order to re-establish stable closed-loop flight. This shows that proprioceptive mechanisms for learning are muscle specific. A hypothetical scheme is presented to explain the role of proprioception for motor learning. 相似文献
14.
J. M. Ramirez K. G. Pearson 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1990,167(4):485-494
1. Phentolamine was injected into the haemolymph of locusts, Locusta migratoria, and its effects on the flight system were analyzed using electrophysiological techniques. 2.Doses of 150 microliters at 10(-2) M phentolamine inactivated the wing stretch-receptors and tegulae without influencing the central nervous system (CNS). The lack of effect on the CNS was demonstrated by the absence of any effect on the flight motor pattern in animals that had been mechanically deafferented prior to the administration of phentolamine. From these observations we conclude that phentolamine can be used to chemically deafferent the flight system of the locust. Consistent with this conclusion is that the administration of phentolamine in intact animals changed the flight motor pattern so that it resembled the pattern occurring in mechanically deafferented animals. 3. The two main advantages of deafferenting the flight system by injecting phentolamine were a) intracellular recordings from central neurons could be easily maintained during the process of deafferentation, and b) the contribution of different groups of proprioceptors to the generation of the motor pattern could be assessed since not all proprioceptors were inactivated simultaneously. 4. By intracellularly recording from elevator motoneurons and administering phentolamine we confirmed a number of previous results related to the function of the wing stretch-receptors and the tegulae. 相似文献
15.
Many of the deleterious effects of chronic stress in vertebrates are caused by the long-term elevation of stress hormones. These negative effects are thought to be unavoidable by-products of sustained activation of the stress response, but the details remain unclear. A comparative perspective may help in understanding chronic stress. We exposed crickets (Gryllus texensis) to a mock predator. A single exposure to a mock predator induced a transient increase in the hemolymph (blood) concentration of the insect stress neurohormone, octopamine. Repeated exposure to the mock predator increased basal levels of octopamine, similar to the effects of chronic stress on the basal levels of vertebrate stress hormones. This study is the first to report an increase in the basal levels of an invertebrate stress hormone in response to repeated flight-or-fight stress. Chronic stress reduced weight gain, and decreased feeding and enhanced weight loss after food deprivation in adult female crickets. However, chronic stress also increased the tendency of crickets to produce sustained flight. Therefore, this study supports the hypothesis that increasing basal levels of stress hormones may be a phylogenetically common response to chronically stressful conditions. It also demonstrates that chronic stress has both positive and negative effects in insects. 相似文献
16.
U. Homberg 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1994,175(5):597-610
The study investigates activity changes in neurons of the lateral accessory lobes in the brain of the locust Schistocerca gregaria during wind-elicited tethered flight. Neurons with ascending projections from the ventral nerve cord to the lateral accessory lobes showed flight-associated excitations which were modulated in the flight motor rhythm. Descending neurons with ramifications in the lateral accessory lobes were tonically excited corresponding to flight duration. The onset of wind-elicited responses in the descending neurons preceded the onset of flight motor activity by 22–60 milliseconds. Neurons connecting the lateral accessory lobes with the central body, the anterior optic tubercles, or other brain areas showed a variety of responses including activity changes during flight initiation and flight termination. Activity in many of these neurons was less tightly coupled to the flight situation and often returned to background levels before flight was terminated. Most of the recorded neurons responded, in addition, to stationary visual stimuli. The results suggest that the lateral accessory lobes in the locust brain are integrative links between the central body, visual pathways, and the ventral nerve cord. The possible involvement of these brain areas in flight control is discussed. 相似文献
17.
Insects exhibit exquisite control of their flapping flight, capable of performing precise stability and steering maneuverability. Here we develop an integrated computational model to investigate flight dynamics of insect hovering based on coupling the equations of 6 degree of freedom (6DoF) motion with the Navier-Stokes (NS) equations. Unsteady aerodynamics is resolved by using a biology-inspired dynamic flight simulator that integrates models of realistic wing-body morphology and kinematics, and a NS solver. We further develop a dynamic model to solve the rigid body equations of 6DoF motion by using a 4th-order Runge-Kutta method. In this model, instantaneous forces and moments based on the NS-solutions are represented in terms of Fourier series. With this model, we perform a systematic simulation-based analysis on the passive dynamic stability of a hovering fruit fly, Drosophila melanogaster, with a specific focus on responses of state variables to six one-directional perturbation conditions during latency period. Our results reveal that the flight dynamics of fruit fly hovering does not have a straightforward dynamic stability in a conventional sense that perturbations damp out in a manner of monotonous convergence. However, it is found to exist a transient interval containing an initial converging response observed for all the six perturbation variables and a terminal instability that at least one state variable subsequently tends to diverge after several wing beat cycles. Furthermore, our results illustrate that a fruit fly does have sufficient time to apply some active mediation to sustain a steady hovering before losing body attitudes. 相似文献
18.
G. Nalbach 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1993,173(3):293-300
The movement of the halteres during fixed flight was video recorded under stroboscopic illumination phase coupled to the wing beat. The halteres swing in a rounded triangular manner through an angle of almost 80° in vertical planes tilted backwards from the transverse plane by ca. 30° (Figs. 1, 2).The physics of the halteres are described in terms of a general formula for the force acting onto the endknob of the moving haltere during rotations and linear accelerations of the fly (Eq. 1). On the basis of the experimentally determined kinematics of the haltere, the primary forces and the forces dependent on angular velocity and on angular acceleration are calculated (Figs. 3, 4).Three distinct types of angular velocity dependent (Coriolis) forces are generated by rotations about 3 orthogonal axes. Thus, in principle one haltere could detect all rotations in space (Fig. 6).The angular acceleration dependent forces have the same direction and frequency as the Coriolis forces, but they are shifted in phase by 90°. Thus, they could be evaluated in parallel and independently from the Coriolis forces. They are, however, much smaller than the Coriolis forces for oscillation frequencies of the fly up to 20 Hz (Fig. 5). From these considerations it is concluded that Coriolis forces play the major role in detecting body rotations. 相似文献
19.
20.
A 47-yr-old male was admitted to the Institute for Fatigue and Sleep Medicine complaining of severe fatigue and daytime sleepiness. His medical history included diagnosis of depression and chronic fatigue syndrome. Antidepressant drugs failed to improve his condition. He described a gradual evolvement of an irregular sleep-wake pattern within the past 20 yrs, causing marked distress and severe impairment of daily functioning. He had to change to a part-time position 7 yrs ago, because he was unable to maintain a regular full-time job schedule. A 10-day actigraphic record revealed an irregular sleep-wake pattern with extensive day-to-day variability in sleep onset time and sleep duration, and a 36 h sampling of both melatonin level and oral temperature (12 samples, once every 3 h) showed abnormal patterns, with the melatonin peak around noon and oral temperature peak around dawn. Thus, the patient was diagnosed as suffering from irregular sleep-wake pattern. Treatment with melatonin (5 mg, 2 h before bedtime) did not improve his condition. A further investigation of the patient's daily habits and environmental conditions revealed two important facts. First, his occupation required work under a daylight intensity lamp (professional diamond-grading equipment of more than 8000 lux), and second, since the patient tended to work late, the exposure to bright light occurred mostly at night. To recover his circadian rhythmicity and stabilize his sleep-wake pattern, we recommended combined treatment consisting of evening melatonin ingestion combined with morning (09:00 h) bright light therapy (0800 lux for 1 h) plus the avoidance of bright light in the evening. Another 10-day actigraphic study done only 1 wk after initiating the combined treatment protocol revealed stabilization of the sleep-wake pattern with advancement of sleep phase. In addition, the patient reported profound improvement in maintaining wakefulness during the day. This case study shows that chronic exposure to bright light at the wrong biological time, during the nighttime, may have serious effects on the circadian sleep-wake patterns and circadian time structure. Therefore, night bright light exposure must be considered to be a risk factor of previously unrecognized occupational diseases of altered circadian time structure manifested as irregularity of the 24 h sleep-wake cycle and melancholy. 相似文献