首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This investigation was designed to determine whether St. John's wort (SJW)(435 mg/kg/d), a readily available antidepressant, or its purported active constituents hypericin (1 mg/kg/d) and hyperforin (10 mg/kg/d) were able to induce various hepatic cytochrome P450 (CYP450) isoforms. SJW, hypericin and hyperforin were administered to male Swiss Webster mice for four consecutive days and hepatic microsomes were prepared on day 5. None of the three treatments resulted in a statistical change in total hepatic CYP450 (SJW treated 0.95 +/- 0.09 nmol/mg vs control 1.09 +/- 0.14 nmol/mg). Furthermore, the catalytic activities of CYP1A2. CYP2E1 and CYP3A were unchanged from control following all three treatments as determined by ethoxyresorufin O-deethylation, p-nitrophenol hydroxylation and erythromycin N-demethylation respectively. Additionally, western immunoblotting demonstrated that there was no significant change in the polypeptide levels of any of the three isoforms. These results indicate that four days of treatment with moderate to high doses of SJW, hyperforin or hypericin fails to induce these CYP450 isoforms in the male Swiss Webster mouse.  相似文献   

2.
We investigated the effects of curcumin, a major antioxidant constituent of turmeric, on hepatic cytochrome P450 (CYP) activity in rats. Wistar rats received curcumin-containing diets (0.05, 0.5 and 5 g/kg diet) with or without injection of carbon tetrachloride (CCl(4)). The hepatic CYP content and activities of six CYP isozymes remained unchanged by curcumin treatment, except for the group treated with the extremely high dose (5 g/kg). This suggested that daily dose of curcumin does not cause CYP-mediated interaction with co-administered drugs. Chronic CCl(4) injection drastically decreased CYP activity, especially CYP2E1 activity, which is involved in the bioactivation of CCl(4), thereby producing reactive free radicals. Treatment with curcumin at 0.5 g/kg alleviated the CCl(4)-induced inactivation of CYPs 1A, 2B, 2C and 3A isozymes, except for CYP2E1. The lack of effect of curcumin on CYP2E1 damage might be related to suicidal radical production by CYP2E1 on the same enzyme. It is speculated that curcumin inhibited CCl(4)-induced secondary hepatic CYPs damage through its antioxidant properties. Our results demonstrated that CYP isozyme inactivation in rat liver caused by CCl(4) was inhibited by curcumin. Dietary intake of curcumin may protect against CCl(4)-induced hepatic CYP inactivation via its antioxidant properties, without inducing hepatic CYPs.  相似文献   

3.
The fear that schistosomes will become resistant to praziquantel (PZQ) motivates the search for alternatives to treat schistosomiasis. The antimalarials quinine (QN) and halofantrine (HF) possess moderate antischistosomal properties. The major metabolic pathway of QN and HF is through cytochrome P450 (CYP) 3A4. Accordingly, this study investigates the effects of CYP3A4 inhibitor, ketoconazole (KTZ), on the antischistosomal potential of these quinolines against Schistosoma mansoni infection by evaluating parasitological, histopathological, and biochemical parameters. Mice were classified into 7 groups: uninfected untreated (I), infected untreated (II), infected treated orally with PZQ (1,000 mg/kg) (III), QN (400 mg/kg) (IV), KTZ (10 mg/kg)+QN as group IV (V), HF (400 mg/kg) (VI), and KTZ (as group V)+HF (as group VI) (VII). KTZ plus QN or HF produced more inhibition (P<0.05) in hepatic CYP450 (85.7% and 83.8%) and CYT b5 (75.5% and 73.5%) activities, respectively, than in groups treated with QN or HF alone. This was accompanied with more reduction in female (89.0% and 79.3%), total worms (81.4% and 70.3%), and eggs burden (hepatic; 83.8%, 66.0% and intestinal; 68%, 64.5%), respectively, and encountering the granulomatous reaction to parasite eggs trapped in the liver. QN and HF significantly (P<0.05) elevated malondialdehyde levels when used alone or with KTZ. Meanwhile, KTZ plus QN or HF restored serum levels of ALT, albumin, and reduced hepatic glutathione (KTZ+HF) to their control values. KTZ enhanced the therapeutic antischistosomal potential of QN and HF over each drug alone. Moreover, the effect of KTZ+QN was more evident than KTZ+HF.  相似文献   

4.
The effects of a newly-developed ketolide antibiotic, telithromycin, on the metabolism of theophylline and the expression of hepatic cytochrome P450 (CYP) 1A2 and CYP3A2 were investigated in rats. Telithromycin at a high dose (100 mg/kg of body weight) was injected intraperitoneally once a day for 3 days. Twenty-four hours (day 4) after the final administration of telithromycin, theophylline (10 mg/kg) was administered intravenously. The presence of telithromycin significantly delayed the disappearance of theophylline from plasma. Parameters related to the pharmacokinetic interaction between theophylline and telithromycin were examined by noncompartmental methods. A significant decrease in the systemic clearance of theophylline was observed in the presence of telithromycin. Pretreatment with telithromycin significantly decreased the metabolic clearance of the major metabolites, 1-methyluric acid and 1,3-dimethyluric acid, with no change in the renal clearance of theophylline, suggesting that the decreased systemic clearance of theophylline by telithromycin is due to reduction of their metabolic clearance. Pretreatment with telithromycin significantly decreased the activity of 7-ethoxyresorufin O-deethylation and testosterone 6 beta-hydroxylation, suggesting that telithromycin decreases the activity of hepatic CYP1A2 and CYP3A2. Western blot analysis revealed that telithromycin significantly decreased the protein levels of CYP1A2 and CYP3A2 in the liver, which could explain the observed decreases in the systemic clearance of theophylline and metabolic clearance of 1-methyluric acid and 1,3-dimethyluric acid. The present study suggests that telithromycin at the dose used in this study alters the pharmacokinetics and metabolism of theophylline, due to reductions in the activity and expression of hepatic CYP1A2 and CYP3A2.  相似文献   

5.
Berberine has long been considered as an antibiotic candidate in aquaculture. However, studies regarding its effects on drug-metabolizing enzymes in fish are still limited. In the present study, the effects of berberine on cytochrome P4501A (CYP1A) and CYP3A in crucian carp were investigated. Injection of different concentrations of berberine (0, 5, 25, 50, and 100 mg/kg) inhibited the CYP1A mRNA expression, thereby inhibiting further the catalytic activity of CYP1A-related ethoxyresorufin-O-deethylase (EROD). Furthermore, both CYP1A expression and EROD activity were further inhibited with increasing berberine concentrations. In addition, the CYP3A expressions at both the mRNA and the protein levels were downregulated by higher berberine concentrations. The catalytic activity of CYP3A-related erythromycin N-demethylase (ERND) was also inhibited by berberine at a dose of no less than 25 mg/kg. Moreover, at the berberine concentration exceeding 25 mg/kg, the inhibition of CYP3A expression and ERND activity increased with increasing berberine concentrations. In vitro experiments were also performed. When berberine was pre-incubated with the crucian carp liver microsomes, it competitively inhibited the corresponding EROD activity with the IC50 of 11.7 μM. However, the ERND activity was slightly inhibited by berberine with the IC50 of 206.4 μM. These results suggest that, in crucian carp, berberine may be a potent inhibitor to CYP1A, whereas the CYP3A inhibition needs a higher concentration of berberine.  相似文献   

6.
The efficacy of fenofibrate in the treatment of hepatic steatosis has not been clearly demonstrated. In this study, we investigated the effects of fenofibrate and silymarin, administered as monotherapy and in combination to existing hepatic steatosis in a unique strain of hereditary hypertriglyceridemic rats (HHTg), a non-obese model of metabolic syndrome. HHTg rats were fed a standard diet without or with fenofibrate (100 mg/kg b.wt./day) or with silymarin (1%) or with a combination of fenofibrate with silymarin for four weeks. Fenofibrate alone and in combination with silymarin decreased serum and liver triglycerides and cholesterol and increased HDL cholesterol. These effects were associated with the decreased gene expression of enzymes involved in lipid synthesis and transport, while enzymes of lipid conversion were upregulated. The combination treatment had a beneficial effect on the gene expression of hepatic cytochrome P450 (CYP) enzymes. The expression of the CYP2E1 enzyme, which is source of hepatic reactive oxygen species, was reduced. In addition, fenofibrate-induced increased CYP4A1 expression was decreased, suggesting a reduction in the pro-inflammatory effects of fenofibrate. These results show high efficacy and mechanisms of action of the combination of fenofibrate with silymarin in treating hepatic steatosis and indicate the possibility of protection against disorders in which oxidative stress and inflammation are involved.  相似文献   

7.
Ueng YF  Ko HC  Chen CF  Wang JJ  Chen KT 《Life sciences》2002,71(11):1267-1277
Evodia rutaecarpa is a traditional Chinese medicine used for the treatment of gastrointestinal disorders and headache. To assess the possible drug interactions, effects of methanol and aqueous extracts of E. rutaecarpa on drug-metabolizing enzymes, cytochrome P450 (CYP), UDP-glucuronosyl transferase (UGT), and glutathione S-transferase (GST) were studied in C57BL/6J mice. Treatment of mice with methanol extract by gastrogavage caused a dose-dependent increase of liver microsomal 7-ethoxyresorufin O-deethylation (EROD) activity. In liver, methanol extract at 2 g/kg caused 47%, 7-, 8-, 4-fold, 81% and 26% increases of benzo(a)pyrene hydroxylation (AHH), EROD, 7-methoxyresorufin O-demethylation (MROD), 7-ethoxycoumarin O-deethylation (ECOD), benzphetamine N-demethylation, and N-nitrosodimethylamine N-demethylation activities, respectively. Aqueous extract at 2 g/kg caused 68%, 2-fold, and 83% increases of EROD, MROD, and ECOD activities, respectively. For conjugation activities, methanol extract elevated UGT and GST activities. Aqueous extract elevated UGT activity without affecting GST activity. Immunoblot analyses showed that methanol extract increased the levels of CYP1A1, CYP1A2, CYP2B-, and GSTYb-immunoreactive proteins. Aqueous extract increased CYP1A2 protein level. In kidney, both extracts had no effects on AHH, ECOD, UGT, and GST activities. Three major bioactive alkaloids rutaecarpine, evodiamine, and dehydroevodiamine were present in both extracts. These alkaloids at 25 mg/kg increased hepatic EROD activity. These results demonstrated that E. rutaecarpa methanol and aqueous extracts could affect drug-metabolizing enzyme activities. Rutaecarpine, evodiamine, and dehydroevodiamine contributed at least in part to the increase of hepatic EROD activity by extracts of E. rutaecarpa. Thus, caution should be paid to the possible drug interactions of E. rutaecarpa and CYP substrates.  相似文献   

8.
褐菖鲉肝CYP 1A作为生物标志物监测厦门海域石油污染状况   总被引:2,自引:0,他引:2  
张玉生  郑榕辉  陈清福 《生态学报》2011,31(19):5851-5859
以褐菖鲉为实验鱼类,以鱼肝微粒体CYP1A 生物标志物(EROD活性和CYP1A蛋白表达量)为指标,在厦门海域开展了两次野外监测实验,研究EROD活性和CYP1A蛋白表达量的变化,以及它们与海水和沉积物中石油类和重金属含量之间的相关性。结果表明,在现场属于一类海水的石油类浓度(0.0121-0.0242 mg/L)条件下,石油类就能够显著诱导褐菖鲉肝EROD活性和CYP1A蛋白表达量,鱼肝EROD活性和CYP1A蛋白表达量与海水中石油类含量均呈现极显著正相关,CYP1A蛋白表达量比EROD活性较为敏感和稳定。此外,在监测实验中,尚未发现这两种生物标志物受所监测海区的海水和沉积物重金属含量的影响。因此,利用褐菖鲉肝微粒体EROD活性和CYP1A蛋白表达量作为生物标志物监测海洋石油类及其PAHs污染是可行的,在海洋环境石油类污染监测及其生化效应评价中具有重要的应用价值。而且,把这两种生物标志物结合起来加以研究并推广应用将更有意义。  相似文献   

9.
Experimental studies have shown that toxicant responsive genes, cytochrome P450s (CYPs) and glutathione S-transferases (GSTs) play a critical role in pesticide-induced toxicity. CYPs play pro-oxidant role and GSTs offer protection in maneb (MB) and paraquat (PQ)-induced brain and lung toxicities. The present study aimed to investigate the effect of repeated exposures of MB and/or PQ on lipid peroxidation (LPO), glutathione content (GSH) and toxicant responsive genes, i.e., CYP1A1, 1A2, 2E1, GSTA4-4, GSTA1-1 and GSTA3-3 in the liver and to correlate the same with polymorphonuclear leukocytes (PMNs). A significant augmentation in LPO and reduction in GSH content was observed in a time of exposure dependent manner in the liver and PMNs of MB and/or PQ treated animals. The expression and catalytic activity of CYP2E1 and GSTA4-4 were significantly increased following MB and/or PQ exposure both in the liver and PMNs. Although the expression of GSTA3-3 was increased, the expression of GSTA1-1 was unaltered after MB and/or PQ treatment in both the liver and PMNs. MB augmented the expression and catalytic activity of CYP1A1 in the liver, however, CYP1A2 was unaffected. PQ, on the other hand, significantly increased hepatic CYP1A2 expression and catalytic activity. MB and/or PQ did not produce any significant changes in CYP1A1 and CYP1A2 in PMNs. The results of the study thus demonstrate that MB and PQ differentially regulate hepatic CYP1A1 and CYP1A2 while LPO, GSH, CYP2E1, GSTA4-4 and GSTA3-3 are modulated in the similar fashions both in the liver and PMNs.  相似文献   

10.
本文旨在研究姜黄素(CRC)对双酚A(BPA)诱导的小鼠卵巢氧化损伤的保护作用。将28日龄雌性小鼠分为对照组、姜黄素组、双酚A组和双酚A加姜黄素组,连续灌胃6周。收集卵巢,通过活性氧(ROS)水平的检测、卵巢闭锁卵泡的观察以及3种关键抗氧化酶表达和活性的测定,研究姜黄素对双酚A诱发的卵巢氧化损伤的保护作用及机制。结果显示,与对照组相比,双酚A暴露后明显增加了卵巢的活性氧水平,造成氧化应激,提高了卵巢中有腔卵泡闭锁比例。与双酚A组相比,双酚A和姜黄素共同处理组降低了卵巢的活性氧水平和卵巢中有腔卵泡闭锁比例。双酚A暴露降低了卵巢超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GPx)以及过氧化氢酶(CAT)的表达和活性,姜黄素逆转了双酚A诱导的3种抗氧化酶表达和活性的下降。结果表明,姜黄素可逆转双酚A通过氧化应激造成的卵巢损伤。  相似文献   

11.
Yang JM  Ip SP  Xian Y  Zhao M  Lin ZX  Yeung JH  Chan RC  Lee SS  Che CT 《PloS one》2012,7(2):e31312
Sophora flavescens is a Chinese medicinal herb used for the treatment of gastrointestinal hemorrhage, skin diseases, pyretic stranguria and viral hepatitis. In this study the herb-drug interactions between S. flavescens and indinavir, a protease inhibitor for HIV treatment, were evaluated in rats. Concomitant oral administration of Sophora extract (0.158 g/kg or 0.63 g/kg, p.o.) and indinavir (40 mg/kg, p.o.) in rats twice a day for 7 days resulted in a dose-dependent decrease of plasma indinavir concentrations, with 55%-83% decrease in AUC(0-∞) and 38%-78% reduction in C(max). The CL (Clearance)/F (fraction of dose available in the systemic circulation) increased up to 7.4-fold in Sophora-treated rats. Oxymatrine treatment (45 mg/kg, p.o.) also decreased indinavir concentrations, while the ethyl acetate fraction of Sophora extract had no effect. Urinary indinavir (24-h) was reduced, while the fraction of indinavir in faeces was increased after Sophora treatment. Compared to the controls, multiple dosing of Sophora extract elevated both mRNA and protein levels of P-gp in the small intestine and liver. In addition, Sophora treatment increased intestinal and hepatic mRNA expression of CYP3A1, but had less effect on CYP3A2 expression. Although protein levels of CYP3A1 and CYP3A2 were not altered by Sophora treatment, hepatic CYP3A activity increased in the Sophora-treated rats. All available data demonstrated that Sophora flavescens reduced plasma indinavir concentration after multiple concomitant doses, possibly through hepatic CYP3A activity and induction of intestinal and hepatic P-gp. The animal study would be useful for predicting potential interactions between natural products and oral pharmaceutics and understanding the mechanisms prior to human studies. Results in the current study suggest that patients using indinavir might be cautioned in the use of S. flavescens extract or Sophora-derived products.  相似文献   

12.
13.
The effect of β-naphthoflavone (β-NF) on several catalytic activities of cytochrome P450 (CYP) and phase II enzymes putatively controlled by [Ah]-receptor activation in the liver, heart and kidney of gilthead seabream, was investigated. In the liver, β-NF treatment [intraperitoneal injection (i.p.) 50 mg/kg] resulted in an increase of CYP content, immunoreactive CYP 1A and methoxyresorufin-O-demethylase (MEROD), pentoxyresorufin O-depentylase (PROD) and ethoxyresorufin-O-deethylase (EROD) activities. However, β-NF had no effect on any of the hepatic phase II enzymes examined (benzaldehyde dehydrogenase, propionaldehyde dehydrogenase, glutathione S-transferase, UDP-glucuronyl-transferase, DT-diaphorase). Single i.p. injection of 10 mg/kg β-NF showed a maximal induction of CYP 1A-like protein and EROD activity after 3–7 days. CYP 1A and EROD returned to control levels 18-days post-treatment. β-NF injection also caused a rapid increase of a single band size of mRNA recognized by a CYP 1A1 cDNA fragment from sea bass (Dicentrarchus labrax). Expression of mRNA preceded the increase of EROD activity and declined rapidly by 96 h. Dose–response experiments demonstrated that EROD was significantly enhanced in liver by a single injection of 0.3 mg/kg β-NF and was the most sensitive measurement for CYP 1A-like induction. β-NF treatments also increased the expression of CYP 1A-like protein, mRNA and EROD, but not MEROD and PROD activities in heart and kidney.  相似文献   

14.
豚鼠高脂血症模型的建立及机制探讨   总被引:2,自引:1,他引:1  
目的建立豚鼠高脂血症模型,探讨模型形成机制并与大鼠模型进行比较。方法豚鼠模型和大鼠模型1组用低胆固醇(0.1%)饲料诱导,大鼠模型2组用高胆固醇(1%)饲料诱导,连续诱导4周。第3、4周分别取血测定血清脂质水平及CETP表达,4周末剖取肝脏检测肝脏FC、TG、ACAT、CYP7A1等指标。动态观察两种动物形成高脂血症状况。结果与对照组比较,豚鼠模型组于第3周血清TC、LDL-C、TG分别升高3.92倍、3.75倍和1.24倍,4周末血清CETP表达、肝脏ACAT活性明显增加,但肝CYP7A1水平变化不大。大鼠模型1组经低胆固醇饲料诱导4周,血脂水平变化不明显,模型2组经高胆固醇饲料诱导于第3周血清TC、LDL-C分别升高1.24倍和1.54倍,明显低于同期豚鼠模型组,4周末大鼠两个模型组肝CYP7A1活性显著增强,血清TG、CETP水平、肝ACAT活性均未见明显变化。结论豚鼠对高脂饲料较大鼠敏感,是一种比大鼠更理想的高血脂模型动物,模型形成机制与血清CETP表达、肝ACAT及CYP7A1活性变化密切相关。  相似文献   

15.
In primary cultures of rat hepatocytes, exposure to arsenite causes a major decrease in dexamethasone (DEX)-mediated induction of CYP3A23 hemoprotein, with a minor decrease in CYP3A23 mRNA. Here we show that addition of heme did not prevent the arsenite-mediated decreases in CYP3A23 protein, and arsenite did not decrease intracellular glutathione levels, indicating that heme and glutathione were not limiting for formation of holoCYP3A23. We also investigated whether arsenite decreases CYP3A23 protein by increasing CYP3A23 degradation by the calpain pathway. The calpain inhibitor, calpeptin, caused greater than a 90% inhibition of calpain-mediated proteolysis, but had no effect on DEX-mediated induction of CYP3A23 protein following 24h treatments. However, calpeptin enhanced the effect of arsenite to decrease induction of CYP3A23 protein. In addition, in short-term studies, calpeptin appeared to be a suicidal inhibitor of CYP3A-catalyzed enzyme activity. Our findings suggest that CYP3A23 protein is not degraded by calpain-mediated proteolysis, even in the presence of arsenite.  相似文献   

16.
Accumulating evidence, including experiments using cytochrome P450 1a2 (Cyp1a2) gene knock-out mice (Cyp1a2(−/−)), indicates that the development of chemically induced porphyria requires the expression of CYP1A2. It has also been demonstrated that iron enhances and expedites the development of experimental uroporphyria, but that iron alone without CYP1A2 expression, as in Cyp1a2(−/−) mice, does not cause uroporphyria. The role of iron in the development of porphyria has not been elucidated. We examined the in vivo effect of iron deficiency on hepatic URO accumulation in experimental porphyria. Mice were fed diets containing low (iron-deficient diet (IDD), 8.5 mg iron/kg) or normal (normal diet (ND), 213.7 mg iron/kg) levels of iron. They were treated with 3-methylcholanthrene (MC), an archetypal inducer of CYP1A, and 5-aminolevulinate (ALA), precursors of porphyrin and heme. We found that uroporphyrin (URO) levels and uroporphyrinogen oxidation (UROX) activity were markedly increased in ND mice treated with MC and ALA, while the levels were not raised in IDD mice with the same treatments. CYP1A2 levels and methoxyresorufin O-demethylase (MROD) activities, the CYP1A2-mediated reaction, were markedly induced in the livers of both ND and IDD mice treated with MC and ALA. UROX activity, supposedly a CYP1A2-dependent activity, was not enhanced in iron-deficient mice in spite of the fact of induction of CYP1A2. We showed that a sufficient level of iron is essential for the development of porphyria and UROX activity.  相似文献   

17.
Hepatic P450s, named M-3 and M-4 were purified from phenobarbitone pretreated rhesus monkey. These demonstrated polypeptide molecular mass of 50 and 52.5 kDa and specific content of 12 and 20 nmol P450/mg protein, respectively. Both the isozymes demonstrated low spin state of heme. Antibodies raised against M-3 inhibited the activity of aminopyrine, erythromycin and ethylmorphine N-demethylase in the microsomes obtained from PB pretreated rhesus monkey by 76, 40 and 35%, respectively. M-4 did the same by 69, 85 and 79%, respectively. These observations indicated M-3 and M-4 to be the members of CYP2C and 3A subfamilies, respectively. These results were substantiated by the observations that M-3 metabolized aminopyrine whereas M-4 metabolized aminopyrine, erythromycin and ethylmorphine in the reconstituted system. Microsomal lipids and cytochrome b5 enhanced the rate of these reactions. Further confirmation to the identity of these isozymes was provided by N-terminal amino acid sequences. The first 10 N-terminal amino acid residues of M-3 were 90% similar to CYP2C20 and 2C9 and that of M-4 were 100 and 90% similar to CYP3A8 and 3A5, respectively. In conclusion, two isozymes of hepatic P450 purified from PB pretreated rhesus monkey belong to CYP2C and 3A subfamilies.  相似文献   

18.
Modulation of hepatic and extrahepatic detoxication enzymes Cyp1a1, Cyp2a5, glutathione S-transferse Ya (GSTYa) and NAD(P)H:quinone oxidoreductase (QOR) dependent catalytic activity and mRNA levels were investigated at 1, 2, or 4 days in liver, lung, or kidney of male, adult CD57 Bl/6 mice treated sc with a single dose (85 micromol/kg) of sodium arsenite (As3+). Maximum decreases of total hepatic cytochrome P450 (CYP) monooxygenase content and catalytic activities, occurring at 24 h, corresponded with maximum increases of heme oxygenase (HO-1) in all tissues, as well as maximum plasma total bilirubin. Extrahepatic increases in CYP were observed only in non-AHR dependent isozymes in the kidney, where both Cyp2a5 mRNA and catalytic activity increased maximally 24 h after treatment. In contrast, no significant changes in Cyp2b1/2-dependent PROD or mRNA activity and decreases in Cyp1a1-dependent-EROD activity were noted 1, 2, or 4 days after treatment. Increases in QOR catalytic activities were observed in all tissues examined with increased mRNA in kidney. On the other hand, GSTYa catalytic activity and mRNA increases were only detected in kidney. This study demonstrates the differential modulation of CYP, QOR, and GST-Ya, important drug metabolizing enzymes after acute As3+ administration. The induction of Cyp2a5, QOR, and GSTYa catalytic activity and gene expression occurred primarily in kidney during or shortly after conditions of oxidant stress.  相似文献   

19.
Water-soluble nanoparticles of curcumin were synthesized, characterized and applied as a stable detoxifying agent for arsenic poisoning. Chitosan nanoparticles of less than 50 nm in diameter containing curcumin were prepared. The particles were characterized by TEM, DLS and FT-IR. The therapeutic efficacy of the encapsulated curcumin nanoparticles (ECNPs) against arsenic-induced toxicity in rats was investigated. Sodium arsenite (2mg/kg) and ECNPs (1.5 or 15 mg/kg) were orally administered to male Wistar rats for 4 weeks to evaluate the therapeutic potential of ECNPs in blood and soft tissues. Arsenic significantly decreased blood δ-aminolevulinic acid dehydratase (δ-ALAD) activity, reduced glutathione (GSH) and increased blood reactive oxygen species (ROS). These changes were accompanied by increases in hepatic total ROS, oxidized glutathione, and thiobarbituric acid-reactive substance levels. By contrast, hepatic GSH, superoxide dismutase and catalase activities significantly decreased on arsenic exposure, indicative of oxidative stress. Brain biogenic amines (dopamine, norepinephrine and 5-hydroxytryptamine) levels also showed significant changes on arsenic exposure. Co-administration of ECNPs provided pronounced beneficial effects on the adverse changes in oxidative stress parameters induced by arsenic. The results indicate that ECNPs have better antioxidant and chelating potential (even at the lower dose of 1.5 mg/kg) compared to free curcumin at 15 mg/kg. The significant neurochemical and immunohistochemical protection afforded by ECNPs indicates their neuroprotective efficacy. The formulation provides a novel therapeutic regime for preventing arsenic toxicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号