首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Richardson’s ground squirrels (RGS) produce alarm calls that warn conspecifics of potential predators. We presented free‐living adult and juvenile RGS with playbacks of repetitive alarm calls from one vs. two juvenile callers broadcast sequentially through two spatially separated loudspeakers. Adult RGS spent a greater proportion of time vigilant in response to two vs. one calling squirrel, whereas juvenile RGS did not respond differentially to two vs. one caller. Apparently then, the relative inexperience of juvenile RGS with alarm calls and the context in which such calls are emitted precludes their enumeration of alarm callers. Taken together with our earlier finding that adult but not juvenile RGS ignore information regarding response urgency encoded in the rate of juvenile produced repetitive calls, our present results suggest a developmental shift in response‐urgency perception. Adult RGS selectively extract information regarding response urgency via discrimination of the number of callers, ignoring less reliable information encoded in the rate of repetitive calls issued by inexperienced juvenile signallers.  相似文献   

2.
Glucocorticoids regulate glucose concentrations and responses to unpredictable events, while also modulating cognition. Juvenile Belding''s ground squirrels (Urocitellus beldingi) learn to respond to whistle and trill alarm calls, warning of aerial and terrestrial predators, respectively, shortly after emerging from natal burrows at one month of age. Alarm calls can cause physiological reactions and arousal, and this arousal, coupled with watching adult responses, might help juveniles learn associations between calls and behavioural responses. I studied whether young show differential cortisol responses to alarm and non-alarm calls, using playbacks of U. beldingi whistles, trills, squeals (a conspecific control vocalization) and silent controls. Trills elicited very high cortisol responses, and, using an individual''s response to the silent control as baseline, only their response to a trill was significantly higher than baseline. This cortisol increase would provide glucose for extended vigilance and escape efforts, which is appropriate for evading terrestrial predators which hunt for long periods. Although whistles do not elicit a cortisol response, previous research has shown that they do result in bradycardia, which enhances attention and information processing. This is a novel demonstration of two physiological responses to two alarm calls, each appropriate to the threats represented by the calls.  相似文献   

3.
This study examined the differential responses to alarm calls from juvenile and adult wild bonnet macaques ( Macaca radiata ) in two parks in southern India. Field studies of several mammalian species have reported that the alarm vocalizations of immature individuals are often treated by perceivers as less provocative than those of adults. This study documents such differences in response using field-recorded playbacks of juvenile and adult alarm vocalizations. To validate the use of playback vocalizations as proxies of natural calls, we compared the responses of bonnet macaques to playbacks of alarm vocalizations with responses engendered by natural alarm vocalizations. We found that the frequency of flight, latency to flee, and the frequency of scanning to vocalization playbacks and natural vocalizations were comparable, thus supporting the use of playbacks to compare the effects of adult and juvenile calls. Our results showed that adult alarm calls were more provocative than juvenile alarm calls, inducing greater frequencies of flight with faster reaction times. Conversely, juvenile alarm calls were more likely to engender scanning by adults, a result interpreted as reflecting the lack of reliability of juvenile calls. Finally, we found age differences in flight behavior to juvenile alarm calls and to playbacks of motorcycle engine sounds, with juveniles and subadults more likely to flee than adults after hearing such sounds. These findings might reflect an increased vulnerability to predators or a lack of experience in young bonnet macaques.  相似文献   

4.
Juvenile Richardson's ground squirrels (RGS; Spermophilus richardsonii) communicate response urgency by modulating the rate of syllable production in repetitive alarm calls, although longer call bouts do not promote more pronounced or longer‐lasting (tonic) vigilance in juvenile call recipients. We exposed free‐living adult RGS to playbacks of alarm calls differing in rate and length to determine whether adult receivers respond to the same alarm parameters as juveniles. Adult squirrels did not respond differentially to differences in call rate or length, suggesting that adult RGS do not attend to call rate as do juveniles. This difference in response may be attributable to a developmental change in the perceptual mechanisms by which individuals extract information regarding response urgency, but could also be a product of adult receivers devaluing information encoded in alarm calls emitted by relatively inexperienced juvenile signalers.  相似文献   

5.
The great gerbil (Rhombomys opimus), a social rodent that lives in family groups, emits three different alarm vocalizations in the presence of predators: a rhythmic call; a faster more intense call; and a single whistle. We tested the hypothesis that the alarm calls communicate risk of predation. We quantified the relationship between predator distance and type of alarm call via human approaches to gerbils. We also tested responses of focal adults in family groups to playback broadcasts of the different calls and controls of bird song and tape noise. Results showed that alarm calls were related to distance from a predator. Gerbils gave the rhythmic call when the predator was farthest away, the more intense call as the predator moved closer; and a short whistle when startled by a close approach of the predator. Gerbils stopped feeding and stood vigilant in a frozen alert posture in response to playbacks of all three alarm calls. They decreased non‐vigilant behavior to the alarm vocalizations more than to the controls and decreased non‐vigilant behavior significantly more in response to the intense alarm and whistle compared with the rhythmic alarm. We conclude that one function of gerbil alarm calls is to communicate response urgency to family members. The rhythmic alarm communicates danger at a distance, whereas the intense alarm and whistle signal the close approach of a predator.  相似文献   

6.
Different mechanisms have been proposed for encoding information into vocalizations: variation of frequency or temporal characteristics, variation in the rate of vocalization production, and use of different vocalization types. We analyze the effect of rate variation on the dual function of chip calls (contact and alarm) produced by White‐eared Ground‐sparrows (Melozone leucotis). We conducted an acoustic playback experiment where we played back 1 min of four chip call rates (12, 36, 60, 84 calls/min). We measured the response of territorial pairs using behavioral responses, and fine structural features of calls produced in response to those playbacks. White‐eared Ground‐sparrows showed more intense behavioral responses to higher than lower call rate playbacks. Both individuals of the pair approached the source of the playback stimulus faster, produced the first vocalization faster, produced more vocalizations, and spent more time close to the stimulus in higher call rate than in lower call rate playbacks. Frequency and duration characteristics of calls (chip and tseet) were similar in response to all call rate playbacks. Our playback experiment elicited different intensity of behavioral responses, suggesting that risk‐based information is encoded in call rate. Our results suggest that variation in the rate of chip call production serves a dual function in this species; calls are used at lower rates for pair contact and at higher rates for alarm/mobbing signals.  相似文献   

7.
California ground squirrel alarm vocalizations were recorded in field and laboratory, and sonagraphically analysed. The contexts of both naturally occurring and experimentally elicited calls were noted in the field. The components of this graded system are chatters, chats and whistles. Chatters and chats are often elicited by terrestrial predators, whistles commonly by low flying raptors. Whistles are more commonly associated with cryptic behavior and flight than chatter-chats, but both call types usually elicit bipedal alert postures. These calls grade along a number of dimensions which may signal redundantly the level of excitation of the caller. We propose that the chatter-chat calls of highly aroused squirrels are composed of more and longer notes, occur at a higher rate, are less noisy and contain more frequency modulation. Whistles, however, are single-note calls that contain no frequency modulation, even though they are emitted by highly aroused squirrels and are long and noise free. Preliminary data suggest that: 1) chats are easier for a human ♀ to localize than whistles; 2) elevation of the head, by adopting bipedal postures and mounting promontories, enhances the audibility of alarms.  相似文献   

8.
Plasticity in the alarm-call responses of Belding's ground squirrels ( Spermophilus beldingi ) may function to prepare young to respond appropriately to calls according to the predator environment and habitat in which the young develop. To examine the extent to which antipredator responses are sensitive to early rearing environments, we studied the development of behavioural responses to playbacks of alarm calls and non-alarm calls in free-living juveniles and captive juveniles housed in large outdoor enclosures. Compared with same-aged, free-living juveniles, captive juveniles were more likely to show an observable response to playbacks, exhibited more exaggerated initial responses (e.g. enter a burrow vs. freeze), and remained alert longer following playbacks. The influence of rearing history on antipredator responses was limited to responses to auditory stimuli, as the two groups of juveniles reacted similarly to fast-moving visual stimuli. The responses of free-living juveniles appeared to be more discriminating than responses of captive juveniles, particularly following playbacks of calls associated with less immediate threats.
The responses of captive and free-living mothers were similar, indicating a developmental component to the juvenile response differences observed here. Free-living juveniles developed a discrimination among alarm and non-alarm calls sooner than captive young. Response differences were evident within 1 wk of first emergence from natal burrows and persisted at least 4 wk, at around the age of natal dispersal. This suggests that early rearing history has an enduring effect on response repertoires, which may be adaptive if animals continue to inhabit the predator environment in which they developed.  相似文献   

9.
Characteristics of arctic ground squirrel alarm calls   总被引:2,自引:0,他引:2  
Summary Arctic ground squirrels, Citellus undulatus, produce six distinctly different sounds. Each of these sounds may represent a signal in itself, but combinations of these acoustic elements or repetition of a single element produce additional signals. Several of these signals serve as alarm calls. One sound element consists of a short (0.05 sec) broad frequency chat while another is a longer (0.16 to 0.25 sec) descending narrow frequency whistle. Squirrels utter three-note chatter calls when approached by a ground predator, and a series of five or more chatters, which fade in intensity, is given upon the close approach of a ground predator as the squirrel escapes into a burrow. A single whistle, which resembles the alarm call of some birds, is given upon the approach of an aerial predator. This call is repeated at approximately six to eight second intervals if the predator alights near a squirrel and remains nearby.  相似文献   

10.
The repetition of elements within an alarm signal is commonly thought to ensure that receivers have detected that signal, or to promote residual vigilance in light of the dangerous circumstances prompting the signal's initial production (tonic communication). Beyond alerting others and maintaining that state of alertness, however, repetitive signal elements may be parsed so as to encode information about the nature of potential threats. To determine how call length and variation in intersyllable latency might prove informative in the repetitive alarm vocalizations of Richardson's ground squirrels (Spermophilus richardsonii), we conducted a field‐based playback experiment quantifying antipredator responses to manipulated alarm calls. Free‐living juvenile squirrels were exposed to playbacks of 12 syllable (long) and six syllable (short) calls with a constant (monotonous) or changing (variable) call rate. The length of calls had no significant effect on the behaviour of call recipients during and immediately after call production; however, call recipients showed greater vigilance after the playback of monotonous calls than after variable calls. The absence of a call length effect is not consistent with tonic communication in the strict sense; rather, enhanced responsiveness to monotonous relative to variable calls suggests that multiple syllables, and the emergent patterns of intersyllable latency, communicate information about response urgency or the distance to a predatory threat. Only monotonous calls convey those aspects with any certainty on the part of the signaller and hence are selectively attended to by receivers.  相似文献   

11.
Field observations and acoustic analyses have shown that suricate (Suricata suricatta) alarm calls vary in their acoustic structure depending on predator type. In this study, we tested whether receivers respond appropriately when hearing a call in the absence of a predator. Although the only way for suricates to escape from predators is to retreat to boltholes, responses to playbacks could be divided into distinct categories. The subjects responded differently to alarm calls given in response to aerial or terrestrial predators and to recruitment calls emitted in response to snakes and deposits on the ground. Suricates also showed rather distinct responses to low, medium and high urgency aerial calls. Differences in the responses were less obvious for different levels of urgency in the terrestrial and recruitment calls. Suricate receivers thus gain information about both the predator type and level of urgency from the acoustic structures of their calls.  相似文献   

12.
Animals gather information about their environment from a variety of sources to enable adaptive decision-making behaviour. Eavesdropping on heterospecific alarm calls enhances predator avoidance, reduces time spent vigilant and allows for more time on daily activities such as foraging. If the information is relevant and reliable, individuals that respond to heterospecific signals may benefit from a wider range of information at a low marginal cost. The Cape ground squirrel (Xerus inauris) and crowned lapwing (Vanellus chilensis) are ground-dwelling species that are taxonomically distant but share similar predators, habitat and anti-predatory behaviours. We used playback experiments of the alarm calls produced by conspecifics and lapwings to investigate the vigilance responses of adult female Cape ground squirrels. Squirrels responded with greater vigilance to both squirrel and lapwing alarm calls, and no changes of vigilance levels were observed in response to a control sound. However, contrary to our predictions, changes in vigilance and time to relax did not differ between conspecific versus heterospecific playbacks. The results from our study suggest that squirrels perceive lapwing alarm calls as relevant and reliable information and that responding to it could increase their survival.  相似文献   

13.
Although about one-third of all primate species are nocturnal, their antipredator behavior has rarely been studied directly. Crypsis and a solitary lifestyle have traditionally been considered to be the main adaptive antipredator strategies of nocturnal primates. However, a number of recent studies have revealed that nocturnal primates are not as cryptic and solitary as previously suggested. Thus, the antipredator strategies available for diurnal primates that rely on early detection and warning of approaching predators may also be available to nocturnal species. In order to shed additional light on the antipredator strategies of nocturnal primates, I studied pair-living red-tailed sportive lemurs (Lepilemur ruficaudatus) in Western Madagascar. In an experimental field study I exposed adult sportive lemurs that lived in pairs and had offspring to playbacks of vocalizations of their main aerial and terrestrial predators, as well as to their own mobbing calls (barks) given in response to disturbances at their tree holes. I documented the subjects' immediate behavioral responses, including alarm calls, during the first minute following a playback. The sportive lemurs did not give alarm calls in response to predator call playbacks or to playbacks with barks. Other behavioral responses, such as gaze and escape directions, corresponded to the hunting strategies of the two classes of predators, suggesting that the corresponding vocalizations were correctly categorized. In response to barks, they scanned the ground and fled. Because barks do not indicate any specific threats, they are presumably general alarm calls. Thus, sportive lemurs do not rely on early warning of acoustically simulated predators; rather, they show adaptive escape strategies and use general alarm calls that are primarily directed toward the predator but may also serve to warn kin and pair-partners.  相似文献   

14.
Wong S  Parada H  Narins PM 《Biotropica》2009,41(1):74-80
Call rate suppression is a common short-term solution for avoiding acoustic interference in animals. It has been widely documented between and within frog species, but the effects of non-anuran calling on frog vocalizations are less well known. Heterospecific acoustic interference on the calling of male Oophaga pumilio (formerly Dendrobates pumilio) was studied in a lowland, wet tropical forest in SE Nicaragua. Acoustic playback experiments were conducted to characterize the responses of O. pumilio males to interfering calls of cicadas, two species of crickets, and a sympatric dendrobatid frog, Phyllobates lugubris. Call rate, call bout duration, percent of time calling, dominant frequency, and latency to first-call were analyzed. Significant call rate suppression was observed during all stimulus playbacks, yet no significant differences were found in spontaneous call rates during pre- and postplayback trials. Dominant frequency significantly decreased after P. lugubris playback and first-call latency significantly decreased in response to both cicada and tree cricket playbacks. These results provide robust evidence that O. pumilio males can dynamically modify their calling pattern in unique ways, depending on the source of the heterospecific acoustic interference.  相似文献   

15.
We simulated the presence of an acoustic competitor by broadcasting conspecific playbacks to males of Johnstone's whistling frog, Eleutherodactylus johnstonei, in the field. We broadcast calls that differed in duration (short, typical, and long), dominant frequency (high, typical, and low), and period (short, typical, and long), and analyzed male vocal responses. We tested the hypothesis that males respond by escalating vocally when they are exposed to female‐attractive calls and by ignoring unattractive ones. At the population level, males responded to playbacks in ways that would potentially increase their attractiveness with regard to solo calling: males increased the duration, reduced the dominant frequency, and increased their calling effort (duty cycle), despite an increase in call period. The modification of call duration occurred only in response to playbacks of low‐frequency calls, long calls, and short‐period calls (selective response), while the modification of the dominant frequency was independent of the characteristic of the playback (fixed response). Contrary to the expected, males did not reduce the call period when they were exposed to attractive playbacks. At the ultimate level, the results suggest energy‐saving strategies. In addition, males seem to trade off call period for the avoidance of acoustic interference with attractive calls as calling effort was typically increased by increasing call duration but only rarely by reducing the call period. Interactive playbacks are necessary to better understand the calling strategies of males of E. johnstonei.  相似文献   

16.
Gunnison's prairie dogs have a complex alarm communication system. We show that the escape responses of prairie dogs to naturally occurring live predators differed depending upon the species of predator. We also show that playbacks of alarm calls that were elicited originally by the live predators produced the same escape responses as the live predators themselves. The escape responses fell into two qualitatively different categories: running to the burrow and diving inside for hawks and humans, and standing upright outside the burrow for coyotes and dogs. Within these two categories there were differences in response. For hawks, only the prairie dogs that were in the direct flight path of a stooping red-tailed hawk ran to their burrows and dove inside, while for humans and human alarm call playbacks there was a colony-wide running to the burrows and diving inside. For coyotes and coyote alarm call playbacks there was a colony-wide running to the burrows and standing alert at the burrow rims, while for domestic dogs and playbacks of alarm calls for domestic dogs the prairie dogs assumed an alert posture wherever they were feeding, but did not run to their burrows. These responses to both the live predators and to predator-elicited alarm calls suggest that the alarm calls of Gunnison's prairie dogs contain meaningful referential information about the categories of predators that approach a colony of prairie dogs.  相似文献   

17.
In the field, we videotaped the reactions of squirrels to playbacks of 1, 3 and 5 whistle vocalizations at two sound intensities differing by 10 dB. The squirrels reacted by running to boulders or burrows and freezing. As time progressed following playbacks, freezing declined and squirrels resumed feeding, locomotion and grooming. With increasing numbers of whistles, squirrels were more likely to run and less likely to mount a boulder. With more high intensity whistles, squirrels froze quadrupedally more and bipedally less. Freezing postures did not vary as a function of the number of low-intensity whistles. Walking was suppressed least by 1 and 3 whistles at low intensity, and inhibited most by all high-intensity whistles as well as by the low-intensity 5-whistle playback. When the squirrel was on a boulder, quadrupedal freezing was more common than bipedal freezing. Off the boulder, the two freezing postures were equally likely. We propose that squirrels assessed risk from information encoded in the whistle(s) and contextual to it, and varied their reactions as a function of apparent risk.  相似文献   

18.
Studies on primate vocalisation have revealed different types of alarm call systems ranging from graded signals based on response urgency to functionally referential alarm calls that elicit predator‐specific reactions. In addition, alarm call systems that include both highly specific and other more unspecific calls have been reported. There has been consistent discussion on the possible factors leading to the evolution of different alarm call systems, among which is the need of qualitatively different escape strategies. We studied the alarm calls of free‐ranging saddleback and moustached tamarins (Saguinus fuscicollis and Saguinus mystax) in northeast Peru. Both species have predator‐specific alarm calls and show specific non‐vocal reactions. In response to aerial predators, they look upwards and quickly move downwards, while in response to terrestrial predators, they look downwards and sometimes approach the predator. We conducted playback experiments to test if the predator‐specific reactions could be elicited in the absence of the predator by the tamarins’ alarm calls alone. We found that in response to aerial alarm call playbacks the subjects looked significantly longer upwards, and in response to terrestrial alarm call playbacks they looked significantly longer downwards. Thus, the tamarins reacted as if external referents, i.e. information about the predator type or the appropriate reaction, were encoded in the acoustic features of the calls. In addition, we found no differences in the responses of S. fuscicollis and S. mystax whether the alarm call stimulus was produced by a conspecific or a heterospecific caller. Furthermore, it seems that S. fuscicollis terrestrial alarm calls were less specific than either S. mystax terrestrial predator alarms or either species’ aerial predator alarms, but because of the small sample size it is difficult to draw a final conclusion.  相似文献   

19.
A three-year field-study of Richardson's ground squirrels was conducted to assess whether alarm calling functions to warn close relatives (“kin selection” hypothesis) or manipulate conspecifics (a “selfish” hypothesis). S. richardsonii had distinct calls for terrestrial and aerial predators, and the responses of squirrels varied appropriately according to the context of calls, implying that calling conveyed correct information concerning the nature of the danger. Alarm calling elicited by naturally occurring encounters with potential predators during 454 h of observation, and by a thrown frisbee in 70 experimental trials, was not equally probable for all age/sex classes. Squirrels were most likely to call when they had offspring or siblings nearby, which is supportive of the hypothesis that alarm calling is maintained by kin selection. Adult males, residing in the vicinity of either their probable progeny or their nonlittermate half-siblings, were the most likely age/sex class to call during the lactation period when young were below ground and were most vulnerable. I conclude that alarm calling by Richardson's ground squirrels is nepotistic rather than manipulative.  相似文献   

20.
Bottlenose dolphins (Tursiops truncatus) produce individually distinctive vocalizations—referred to as “signature whistles”—that are thought to function as an individual and conspecific recognition system for maintenance of consistent contact between individuals. Observations and playback experiments were conducted at aquariums to study these whistle–vocal exchanges in bottlenose dolphins. Temporal patterns of vocalization were examined by analyzing the intercall intervals between two consecutive whistles. When a second individual produced a call that was different from the first individual’s vocalization, most of these calls were shorter than 1 s. However, when two consecutive calls were produced by the same individual, the second call rarely occurred within 1 s of the first. These results suggest that a second whistle may be produced by a different caller in response to the first whistle; however, in the case of an absence of a response, the first caller is likely to give further whistles. The results of this acoustic analysis show that the dolphins used in this study mostly used signature whistles during the recorded vocal exchanges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号