首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Novel mouse models were developed in which the hepatic selenoprotein population was targeted for removal by disrupting the selenocysteine (Sec) tRNA([Ser]Sec) gene (trsp), and selenoprotein expression was then restored by introducing wild type or mutant trsp transgenes. The selenoprotein population was partially replaced in liver with mutant transgenes encoding mutations at either position 34 (34T-->A) or 37 (37A-->G) in tRNA([Ser]Sec). The A34 transgene product lacked the highly modified 5-methoxycarbonylmethyl-2'-O-methyluridine, and its mutant base A was converted to I34. The G37 transgene product lacked the highly modified N(6)-isopentenyladenosine. Both mutant tRNAs lacked the 2'-methylribose at position 34 (Um34), and both supported expression of housekeeping selenoproteins (e.g. thioredoxin reductase 1) in liver but not stress-related proteins (e.g. glutathione peroxidase 1). Thus, Um34 is responsible for synthesis of a select group of selenoproteins rather than the entire selenoprotein population. The ICA anticodon in the A34 mutant tRNA decoded Cys codons, UGU and UGC, as well as the Sec codon, UGA. However, metabolic labeling of A34 transgenic mice with (75)Se revealed that selenoproteins incorporated the label from the A34 mutant tRNA, whereas other proteins did not. These results suggest that the A34 mutant tRNA did not randomly insert Sec in place of Cys, but specifically targeted selected selenoproteins. High copy numbers of A34 transgene, but not G37 transgene, were not tolerated in the absence of wild type trsp, further suggesting insertion of Sec in place of Cys in selenoproteins.  相似文献   

3.
Selenium is essential in mammalian embryonic development. However, in adults, selenoprotein levels in several organs including liver can be substantially reduced by selenium deficiency without any apparent change in phenotype. To address the role of selenoproteins in liver function, mice homozygous for a floxed allele encoding the selenocysteine (Sec) tRNA([Ser]Sec) gene were crossed with transgenic mice carrying the Cre recombinase under the control of the albumin promoter that expresses the recombinase specifically in liver. Recombination was nearly complete in mice 3 weeks of age, whereas liver selenoprotein synthesis was virtually absent, which correlated with the loss of Sec tRNA([Ser]Sec) and activities of major selenoproteins. Total liver selenium was dramatically decreased, whereas levels of low molecular weight selenocompounds were little affected. Plasma selenoprotein P levels were reduced by about 75%, suggesting that selenoprotein P is primarily exported from the liver. Glutathione S-transferase levels were elevated in the selenoprotein-deficient liver, suggesting a compensatory activation of this detoxification program. Mice appeared normal until about 24 h before death. Most animals died between 1 and 3 months of age. Death appeared to be due to severe hepatocellular degeneration and necrosis with concomitant necrosis of peritoneal and retroperitoneal fat. These studies revealed an essential role of selenoproteins in liver function.  相似文献   

4.
5.
A regulatory role for Sec tRNA[Ser]Sec in selenoprotein synthesis   总被引:1,自引:0,他引:1       下载免费PDF全文
Selenium is biologically active through the functions of selenoproteins that contain the amino acid selenocysteine. This amino acid is translated in response to in-frame UGA codons in mRNAs that include a SECIS element in its 3' untranslated region, and this process requires a unique tRNA, referred to as tRNA([Ser]Sec). The translation of UGA as selenocysteine, rather than its use as a termination signal, is a candidate restriction point for the regulation of selenoprotein synthesis by selenium. A specialized reporter construct was used that permits the evaluation of SECIS-directed UGA translation to examine mechanisms of the regulation of selenoprotein translation. Using SECIS elements from five different selenoprotein mRNAs, UGA translation was quantified in response to selenium supplementation and alterations in tRNA([Ser]Sec) levels and isoform distributions. Although each of the evaluated SECIS elements exhibited differences in their baseline activities, each was stimulated to a similar extent by increased selenium or tRNA([Ser]Sec) levels and was inhibited by diminished levels of the methylated isoform of tRNA([Ser]Sec) achieved using a dominant-negative acting mutant tRNA([Ser]Sec). tRNA([Ser]Sec) was found to be limiting for UGA translation under conditions of high selenoprotein mRNA in both a transient reporter assay and in cells with elevated GPx-1 mRNA. This and data indicating increased amounts of the methylated isoform of tRNA([Ser]Sec) during selenoprotein translation indicate that it is this isoform that is translationally active and that selenium-induced tRNA methylation is a mechanism of regulation of the synthesis of selenoproteins.  相似文献   

6.
Mice homozygous for an allele encoding the selenocysteine (Sec) tRNA [Ser]Sec gene (Trsp) flanked by loxP sites were generated. Cre recombinase-dependent removal of Trsp in these mice was lethal to embryos. To investigate the role of Trsp in mouse mammary epithelium, we deleted this gene by using transgenic mice carrying the Cre recombinase gene under control of the mouse mammary tumor virus (MMTV) long terminal repeat or the whey acidic protein promoter. While both promoters target Cre gene expression to mammary epithelium, MMTV-Cre is also expressed in spleen and skin. Sec tRNA [Ser]Sec amounts were reduced by more than 70% in mammary tissue with either transgene, while in skin and spleen, levels were reduced only with MMTV-Cre. The selenoprotein population was selectively affected with MMTV-Cre in breast and skin but not in the control tissue, kidney. Moreover, within affected tissues, expression of specific selenoproteins was regulated differently and often in a contrasting manner, with levels of Sep15 and the glutathione peroxidases GPx1 and GPx4 being substantially reduced. Expression of the tumor suppressor genes BRCA1 and p53 was also altered in a contrasting manner in MMTV-Cre mice, suggesting greater susceptibility to cancer and/or increased cell apoptosis. Thus, the conditional Trsp knockout mouse allows tissue-specific manipulation of Sec tRNA and selenoprotein expression, suggesting that this approach will provide a useful tool for studying the role of selenoproteins in health.  相似文献   

7.
Selenocysteine (Sec) is inserted into selenoproteins co-translationally with the help of various cis- and trans-acting factors. The specific mechanisms of Sec biosynthesis and insertion into protein in eukaryotic cells, however, are not known. Two proteins, SECp43 and the soluble liver antigen (SLA), were previously reported to interact with tRNA([Ser]Sec), but their functions remained elusive. Herein, we report that knockdown of SECp43 in NIH3T3 or TCMK-1 cells using RNA interference technology resulted in a reduction in the level of methylation at the 2'-hydroxylribosyl moiety in the wobble position (Um34) of Sec tRNA([Ser]Sec), and consequently reduced glutathione peroxidase 1 expression. Double knockdown of SECp43 and SLA resulted in decreased selenoprotein expression. SECp43 formed a complex with Sec tRNA([Ser]Sec) and SLA, and the targeted removal of one of these proteins affected the binding of the other to Sec tRNA([Ser]Sec). SECp43 was located primarily in the nucleus, whereas SLA was found in the cytoplasm. Co-transfection of both proteins resulted in the nuclear translocation of SLA suggesting that SECp43 may also promote shuttling of SLA and Sec tRNA([Ser]Sec) between different cellular compartments. Taken together, these data establish the role of SECp43 and SLA in selenoprotein biosynthesis through interaction with tRNA([Ser]Sec) in a multiprotein complex. The data also reveal a role of SECp43 in regulation of selenoprotein expression by affecting the synthesis of Um34 on tRNA([Ser]Sec) and the intracellular location of SLA.  相似文献   

8.
9.
Selenocysteine (Sec) is the 21st amino acid in the genetic code. Its tRNA is variably methylated on the 2'-O-hydroxyl site of the ribosyl moiety at position 34 (Um34). Herein, we identified a role of Um34 in regulating the expression of some, but not all, selenoproteins. A strain of knock-out transgenic mice was generated, wherein the Sec tRNA gene was replaced with either wild type or mutant Sec tRNA transgenes. The mutant transgene yielded a tRNA that lacked two base modifications, N(6)-isopentenyladenosine at position 37 (i(6)A37) and Um34. Several selenoproteins, including glutathione peroxidases 1 and 3, SelR, and SelT, were not detected in mice rescued with the mutant transgene, whereas other selenoproteins, including thioredoxin reductases 1 and 3 and glutathione peroxidase 4, were expressed in normal or reduced levels. Northern blot analysis suggested that other selenoproteins (e.g. SelW) were also poorly expressed. This novel regulation of protein expression occurred at the level of translation and manifested a tissue-specific pattern. The available data suggest that the Um34 modification has greater influence than the i(6)A37 modification in regulating the expression of various mammalian selenoproteins and Um34 is required for synthesis of several members of this protein class. Many proteins that were poorly rescued appear to be involved in responses to stress, and their expression is also highly dependent on selenium in the diet. Furthermore, their mRNA levels are regulated by selenium and are subject to nonsense-mediated decay. Overall, this study described a novel mechanism of regulation of protein expression by tRNA modification that is in turn regulated by levels of the trace element, selenium.  相似文献   

10.
Selenocysteine incorporation in eukaryotes occurs cotranslationally at UGA codons via the interactions of RNA-protein complexes, one comprised of selenocysteyl (Sec)-tRNA([Ser]Sec) and its specific elongation factor, EFsec, and another consisting of the SECIS element and SECIS binding protein, SBP2. Other factors implicated in this pathway include two selenophosphate synthetases, SPS1 and SPS2, ribosomal protein L30, and two factors identified as binding tRNA([Ser]Sec), termed soluble liver antigen/liver protein (SLA/LP) and SECp43. We report that SLA/LP and SPS1 interact in vitro and in vivo and that SECp43 cotransfection increases this interaction and redistributes all three proteins to a predominantly nuclear localization. We further show that SECp43 interacts with the selenocysteyl-tRNA([Ser]Sec)-EFsec complex in vitro, and SECp43 coexpression promotes interaction between EFsec and SBP2 in vivo. Additionally, SECp43 increases selenocysteine incorporation and selenoprotein mRNA levels, the latter presumably due to circumvention of nonsense-mediated decay. Thus, SECp43 emerges as a key player in orchestrating the interactions and localization of the other factors involved in selenoprotein biosynthesis. Finally, our studies delineating the multiple, coordinated protein-nucleic acid interactions between SECp43 and the previously described selenoprotein cotranslational factors resulted in a model of selenocysteine biosynthesis and incorporation dependent upon both cytoplasmic and nuclear supramolecular complexes.  相似文献   

11.
Selenium is an essential dietary element with antioxidant roles in immune regulation, but there is little understanding of how this element acts at the molecular level in host defense and inflammatory disease. Selenium is incorporated into the amino acid selenocysteine (Sec), which in turn is inserted into selenoproteins in a manner dependent on Sec tRNA([Ser]Sec). To investigate the molecular mechanism that links selenium to T cell immunity, we generated mice with selenoprotein-less T cells by cell type-specific ablation of the Sec tRNA([Ser]Sec) gene (trsp). Herein, we show that these mutant mice exhibit decreased pools of mature T cells and a defect in T cell-dependent antibody responses. We also demonstrate that selenoprotein deficiency leads to oxidant hyperproduction in T cells and thereby suppresses T cell proliferation in response to T cell receptor stimulation. These findings offer novel insights into immune function of selenium and physiological antioxidants.  相似文献   

12.
Selenium is incorporated into proteins as selenocysteine (Sec), which is dependent on its specific tRNA, designated tRNA[Ser]Sec. Targeted removal of the tRNA[Ser]Sec gene (Trsp) in mouse hepatocytes previously demonstrated the importance of selenoproteins in liver function. Herein, analysis of plasma proteins in this Trsp knockout mouse revealed increases in apolipoprotein E (ApoE) that was accompanied by elevated plasma cholesterol levels. The expression of genes involved in cholesterol biosynthesis, metabolism and transport were also altered in knockout mice. Additionally, in two transgenic Trsp mutant mouse lines (wherein only housekeeping selenoprotein synthesis was restored), the expression of ApoE, as well as genes involved in cholesterol biosynthesis, metabolism and transport were similar to those observed in wild type mice. These data correlate with reports that selenium deficiency results in increased levels of ApoE, indicating for the first time that housekeeping selenoproteins have a role in regulating lipoprotein biosynthesis and metabolism.  相似文献   

13.
14.
Eukaryotic selenocysteine (Sec) protein insertion machinery was thought to be restricted to animals, but the occurrence of both Sec-containing proteins and the Sec insertion system was recently found in Chlamydomonas reinhardtii, a member of the plant kingdom. Herein, we used RT-PCR to determine the sequence of C. reinhardtii Sec tRNA[Ser]Sec, the first non-animal eukaryotic Sec tRNA[Ser]Sec sequence. Like its animal counterpart, it is 90 nucleotides in length, is aminoacylated with serine by seryl-tRNA synthetase, and decodes specifically UGA. Evolutionary analyses of known Sec tRNAs identify the C. reinhardtii form as the most diverged eukaryotic Sec tRNA[Ser]Sec and reveal a common origin for this tRNA in bacteria, archaea, and eukaryotes.  相似文献   

15.
Mutations in selC, which reduce the 8-base pair aminoacyl-acceptor helix to the canonical 7-base pair length (tRNA(Sec)(delAc] or which replace the extra arm of tRNA(Sec) by that of a serine acceptor tRNA species (tRNA(Sec)(ExS), block the function in selenoprotein synthesis in vivo (Baron, C., Heider, J., and B?ck, A. (1990) Nucleic Acids Res. 18, 6761-6766). tRNA(Sec), tRNA(Sec)(delAc), and tRNA(Sec)(ExS) were purified and analyzed for their interaction with purified seryl-tRNA synthetase, selenocysteine synthase and translation factors SELB and EF-Tu. It was found that seryl-tRNA synthetase displays 10-fold impaired Km and Kcat values for tRNA(Sec) in comparison to tRNA(Ser), decreasing the overall charging efficiency (Kcat/Km) of tRNA(Sec) to 1% of that characteristic for tRNA(Ser). tRNA(Sec)(ExS) was a less efficient substrate for the enzyme (Kcat/Km 0.2% of the tRNA(Ser) value) whereas the tRNA(Ser)(delAc) variant was charged with an approximately 2-3-fold improved rate compared to wild-type tRNA(Sec). Both mutant tRNA variants, when charged with L-serine, were able to interact with selenocysteine synthase to give rise to selenocysteyl-tRNA with tRNA(Sec)(ExS) being as efficient as wild-type tRNA(Sec). Seryl-tRNA(Sec)(delAc), on the other hand, was selenylated very slowly. Reduction of the length of the aminoacyl-acceptor stem to 7 base pairs prevented the interaction with translation factor SELB but allowed binding to EF-Tu, irrespective of whether tRNA(Sec)(delAc) was charged with serine or selenocysteine. The aminoacyl-acceptor helix of tRNA(Sec), therefore, is a major determinant directing binding to SELB and precluding interaction with EF-Tu.  相似文献   

16.
Sec (selenocysteine) is biosynthesized on its tRNA and incorporated into selenium-containing proteins (selenoproteins) as the 21st amino acid residue. Selenoprotein synthesis is dependent on Sec tRNA and the expression of this class of proteins can be modulated by altering Sec tRNA expression. The gene encoding Sec tRNA (Trsp) is a single-copy gene and its targeted removal in liver demonstrated that selenoproteins are essential for proper function wherein their absence leads to necrosis and hepatocellular degeneration. In the present study, we found that the complete loss of selenoproteins in liver was compensated for by an enhanced expression of several phase II response genes and their corresponding gene products. The replacement of selenoprotein synthesis in mice carrying mutant Trsp transgenes, wherein housekeeping, but not stress-related selenoproteins are expressed, led to normal expression of phase II response genes. Thus the present study provides evidence for a functional link between housekeeping selenoproteins and phase II enzymes.  相似文献   

17.
18.
Dietary selenium restriction in mammals causes bodily selenium to be preferentially retained in the brain relative to other organs. Almost all the known selenoproteins are found in brain, where expression is facilitated by selenocysteine (Sec)-laden selenoprotein P. The brain also expresses selenocysteine lyase (Scly), an enzyme that putatively salvages Sec and recycles the selenium for selenoprotein translation. We compared mice with a genetic deletion of Scly to selenoprotein P (Sepp1) knockout mice for similarity of neurological impairments and whether dietary selenium modulates these parameters. We report that Scly knockout mice do not display neurological dysfunction comparable to Sepp1 knockout mice. Feeding a low-selenium diet to Scly knockout mice revealed a mild spatial learning deficit without disrupting motor coordination. Additionally, we report that the neurological phenotype caused by the absence of Sepp1 is exacerbated in male vs. female mice. These findings indicate that Sec recycling via Scly becomes limiting under selenium deficiency and suggest the presence of a complementary mechanism for processing Sec. Our studies illuminate the interaction between Sepp1 and Scly in the distribution and turnover of body and brain selenium and emphasize the consideration of sex differences when studying selenium and selenoproteins in vertebrate biology.  相似文献   

19.
20.
Selenocysteine insertion during selenoprotein biosynthesis begins with the aminoacylation of selenocysteine tRNA[ser]sec with serine, the conversion of the serine moiety to selenocysteine, and the recognition of specific UGA codons within the mRNA. Selenocysteine tRNA[ser]sec exists as two major forms, differing by methylation of the ribose portion of the nucleotide at the wobble position of the anticodon. The levels and relative distribution of these two forms of the tRNA are influenced by selenium in mammalian cells and tissues. We have generated Chinese hamster ovary cells that exhibit increased levels of tRNA[ser]sec following transfection of the mouse tRNA[ser]sec gene. The levels of selenocysteine tRNA[ser]sec in transfectants increased proportionally to the number of stably integrated copies of the tRNA[ser]sec gene. Although we were able to generate transfectants overproducing tRNA[ser]sec by as much as tenfold, the additional tRNA was principally retained in the unmethylated form. Selenium supplementation could not significantly affect the relative distributions of the two major selenocysteine tRNA[ser]sec isoacceptors. In addition, increased levels of tRNA[ser]sec did not result in measurable alterations in the levels of selenoproteins, including glutathione peroxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号