首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A new method using hydrophobic interaction chromatography on phenyl-Sepharose was developed to purify branched chain alpha-ketoacid dehydrogenase complex from commercially available frozen rat liver. Yields of greater than 50% were routinely achieved. The purified enzyme, composed of E1 alpha, E1 beta, and E2 subunits, appeared homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and contained endogenous kinase activity for phosphorylation and inactivation of the complex.  相似文献   

4.
5.
6.
Branched chain alpha-ketoacid dehydrogenase (EC 1.2.4.4) complex, the rate-limiting enzyme of branched chain amino acid catabolism in most tissues, is subject to regulation by covalent modification, with phosphorylation inactivating and dephosphorylation activating the complex. The enzyme complex from liver of chow-fed rats is mainly in the active form but that from liver of rats fed a low-protein diet is mainly in the inactive form. Isolated hepatocytes were used to identify factors that affect interconversion of branched chain alpha-ketoacid dehydrogenase. The enzyme present in hepatocytes of rats fed a low-protein diet appears much more responsive to regulation by covalent modification than the branched chain alpha-ketoacid dehydrogenase present in hepatocytes of normal chow-fed rats. alpha-Chloroisocaproate, a specific inhibitor of the kinase responsible for phosphorylation and inactivation of the complex, greatly stimulates oxidation of alpha-keto[1-14C]isovalerate by hepatocytes prepared from rats fed a low-protein diet but not from normal chow-fed rats. Oxidizable substrates are also much more effective inhibitors of branched chain alpha-ketoacid oxidation with hepatocytes from rats fed a low-protein diet than from normal chow-fed rats. Activity measurements with cell-free extracts suggest that changes in flux through the dehydrogenase with intact hepatocytes prepared from rats fed a low-protein diet are explained in large part by changes in the proportion of the enzyme in the active, dephosphorylated form. Regulation of liver branched chain alpha-ketoacid dehydrogenase by covalent modification functions to conserve branched chain amino acids for protein synthesis during periods of restricted dietary protein intake.  相似文献   

7.
Branched chain alpha-ketoacid dehydrogenase (EC 1.2.4.3(4)) was solubilized and purified from bovine liver mitochondria for the first time. Decarboxylation of alpha-ketoisovalerate, alpha-keto-beta-methylvalerate, and alpha-ketoisocaproate was catalyzed by this multienzyme complex and this activity was co-purified for each substrate. Three enzymatic functions were contained in the complex including decarboxylation of the above ketoacids, transacylation of their simple acid derivatives, and reduction of NAD+ as an overall reaction. Product stoichiometry of these three reactions was 1 CO2:1 acyl-CoA:1 NADH. Activity depended upon the addition of thiamin pyrophosphate, CoASH, and NAD+ which were dissociable cofactors. Physically, two active forms of the enzyme complex were found: a 275,000-dalton unit and a 2 x 10(6)-dalton component. Both showed a characteristic flavin spectra and catalyzed all functions of the complex, implying that 10 small units aggregated into the larger unit. The soluble complex as visualized by electron microscopy had a diameter ranging from 12 to 24 nm corresponding to a molecular weight of 2 x 10(6). The size of the native membrane-bound component remains to be determined.  相似文献   

8.
9.
The effects of branched-chain alpha-ketoacids on flux through and activity state of the branched-chain alpha-ketoacid dehydrogenase complex were studied in hepatocytes prepared from chow-fed, starved, and low-protein-diet-fed rats. Very low concentrations of alpha-ketoisocaproate caused a dramatic stimulation (50% activation at 20 microM) of alpha-ketoisovalerate decarboxylation in hepatocytes from low-protein-fed rats. alpha-Keto-beta-methylvalerate was also effective, but less so than alpha-ketoisocaproate. alpha-Ketoisocaproate did not stimulate alpha-ketoisovalerate decarboxylation by hepatocytes from chow-fed or starved rats. To a smaller degree, alpha-keto-beta-methylvalerate and alpha-ketoisovalerate stimulated alpha-ketoisocaproate decarboxylation by hepatocytes from low-protein-fed rats. The implied order of potency of stimulation of flux through branched-chain alpha-ketoacid dehydrogenase was alpha-ketoisocaproate greater than alpha-keto-beta-methylvalerate greater than alpha-ketoisovalerate, i.e., the same order of potency of these compounds as branched-chain alpha-ketoacid dehydrogenase kinase inhibitors. Fluoride, known to inhibit branched-chain alpha-ketoacid dehydrogenase phosphatase, largely prevented alpha-ketoisocaproate and alpha-chloroisocaproate activation of flux through the branched-chain alpha-ketoacid dehydrogenase. Assay of the branched-chain alpha-ketoacid complex in cell-free extracts of hepatocytes isolated from low-protein-diet-fed rats confirmed that alpha-ketoacids affected the activity state of the complex. Branched-chain alpha-ketoacids failed to activate flux in hepatocytes prepared from chow-fed and starved rats because essentially all of the complex was already in the dephosphorylated, active state. These findings indicate that inhibition of branched-chain alpha-ketoacid dehydrogenase kinase activity by branched-chain alpha-ketoacids is important for regulation of the activity state of hepatic branched-chain alpha-ketoacid dehydrogenase.  相似文献   

10.
We determined the cDNA sequence of the mRNA for antithrombin III (AT III) from sheep liver. It encodes a protein of 465 amino acids, including a signal peptide of 32 amino acids. The amino acid sequence of the mature protein shows a sequence identity of 89.1%, 95.6% and 85.0% to the human, bovine and rabbit equivalents, respectively. Cysteine residues involved in disulfide bonds as well as potential glycosylation sites are conserved between the four species. In contrast, the amino acid sequence of the signal peptide shows a smaller identity, i.e., 68.7% and 56.3% compared to the human and rabbit preprotein, respectively.  相似文献   

11.
We have isolated a cDNA encoding the branched chain alpha-ketoacid dehydrogenase E1 alpha subunit. A rat liver lambda gt11 expression library was screened with antibody reactive with the 2-oxoisovalerate dehydrogenase (lipoamide) component. A positive clone, lambda BZ304, contains a 1.7-kilobase pair cDNA insert with a 1323-base pair open reading frame. Translation of the open reading frame predicts the 24 residues of the previously reported phosphorylation sites 1 and 2 for the bovine kidney and rabbit heart enzymes. The N-terminal sequence of purified E1 alpha was determined, and this sequence was found 40 residues from the beginning of the deduced peptide sequence. Northern blots of rat liver and muscle RNA demonstrate a single mRNA species of approximately 1.8 kilobase pairs in each tissue, suggesting that this cDNA is nearly full length.  相似文献   

12.
Tryptic digestion of histone H1 from the sperm of the sea urchin Sphaerechinus granularis leaves a limiting peptide of approx. 80 residues that is of similar size to the limit peptide from calf thymus H1 or chicken erythrocyte H5. The S. granularis limit peptide folds to form tertiary structure similar to that of the intact parent histone H1 (shown by n.m.r. spectra), but the helical content is decreased by the digestion from 64 residues to 28. In contrast, intact calf thymus H1 and chicken erythrocyte H5 histones have only about 28 helical residues, which are preserved in their limit peptides. The extra helix in S. granularis is shown to be rapidly digested away by trypsin, and its location in histone H1 is discussed. A possible relationship of this structural feature to the length of linker DNA is proposed.  相似文献   

13.
The metabolism of proline was studied in liver cells isolated from starved rats. The following observations were made. 1. Consumption of proline could be largely accounted for by production of glucose, urea, glutamate and glutamine. 2. At least 50% of the total consumption of oxygen was used for proline catabolism. 3. Ureogenesis and gluconeogenesis from proline could be stimulated by partial uncoupling of oxidative phosphorylation. 4. Addition of ethanol had little effect on either proline uptake or oxygen consumption, but strongly inhibited the production of both urea and glucose and caused further accumulation of glutamate and lactate. Accumulation of glutamine was not affected by ethanol. 5. The effects of ethanol could be overcome by partial uncoupling of oxidative phosphorylation. 6. The apparent Km values of argininosuccinate synthetase (EC 6.3.4.5) for aspartate and citrulline in the intact hepatocyte are higher than those reported for the isolated enzyme. 7. 3-Mercaptopicolinate, an inhibitor of phosphoenolpyruvate carboxykinase (EC 4.1.1.32), greatly enhanced cytosolic aspartate accumulation during proline metabolism, but inhibited urea synthesis. 8. It is concluded that when proline is provided as a source of nitrogen to liver cells, production of ammonia by oxidative deamination of glutamate is inhibited by the highly reduced state of the nicotinamide nucleotides within the mitochondria. 9. Conversion of proline into glucose and urea is a net-energy-yielding process, and the high state of reduction of the nicotinamide nucleotides is presumably maintained by a high phosphorylation potential. Thus when proline is present as sole substrate, the further oxidation of glutamate by glutamate dehydrogenase (EC 1.4.1.3) is limited by the rate of energy expenditure of the cell.  相似文献   

14.
Kinetics of transport and metabolism of bromosulfophthalein have been studied in isolated liver cells in a dose-dependent manner obtaining the following results. The disposition of bromosulfophthalein in suspensions of isolated liver cells is similar to the turnover in the whole liver. The initial maximal rate of uptake of bromosulfophthalein is 2--3 times faster than intracellular conjugation with glutathione. Conjugation proceeds to an equilibrium between intracellular substrate (bromosulfophthalein) and product (bromosulfophthalein-glutathione conjugate) which are both transiently accumulated in the cell. Formation of bromosulfophthalein-glutathione is accompanied by an equimolar decrease of glutathione. The bromosulfophthalein-glutathione conjugate is slowly released from the cells in an energy-dependent and saturable transport process. The maximal velocity of excretion amounts to only 6% of the maximal velocity of uptake and to 20% of the maximal velocity of conjugation. Excretion, therefore, represents the slowest step in the overall turnover.  相似文献   

15.
Palmitic acid uptake and metabolism by isolated rat liver cells.   总被引:2,自引:2,他引:0  
  相似文献   

16.
17.
Tamoxifen (and 4-hydroxytamoxifen), a nonsteroidal triphenylethylene antiestrogenic drug widely used in the treatment of breast cancer, interacts strongly with the respiratory chain of isolated rat liver mitochondria. The drug acts as both an uncoupling agent and a powerful inhibitor of electron transport. Tamoxifen brings about a collapse of the membrane potential. Enzymatic assays and spectroscopic studies indicate that tamoxifen inhibits electron transfer in the respiratory chain at the levels of complex III (ubiquinol–cytochrome-c reductase) and, to a lesser extent, of complex IV (cytochrome-c oxidase). The activities can be restored by the addition of diphosphatidylglycerol, a phospholipid implicated in the functioning of the respiratory chain complexes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Branched-chain alpha-ketoacid dehydrogenase and pyruvate dehydrogenase in isolated rat pancreatic islets were shown to be regulated by a phosphorylation/dephosphorylation mechanism. Broad-specificity phosphoprotein phosphatase treatment stimulated and ATP addition inhibited their activities. The kinases responsible for inactivating these complexes were shown to be sensitive to inhibition by known inhibitors, alpha-chloroisocaproate and dichloroacetate. Total activity (nmol/min/islet / 37 degrees C) of branched-chain alpha-ketoacid dehydrogenase and pyruvate dehydrogenase was 0.86 and 5.09, with a % active form (activity before phosphatase treatment divided by activity after phosphatase treatment X 100) of 36% and 94%, respectively. Incubation of intact isolated islets with alpha-chloroisocaproate affected neither insulin release nor flux through branched-chain alpha-ketoacid dehydrogenase.  相似文献   

19.
Rat heart branched chain alpha-ketoacid dehydrogenase kinase (BCKDH kinase) and pyruvate dehydrogenase kinase (PDH kinase) were purified from their respective complexes to apparent homogeneity. BCKDH kinase consisted of one subunit with molecular weight 44,000-45,000 Da, whereas PDH kinase consisted of two subunits with molecular weight 48,000 Da (alpha) and 45,000 Da (beta) as previously shown for the bovine kidney enzyme (Stepp et al., 1983, J. Biol. Chem. 258, 9454-9458). Proteolysis maps of BCKDH kinase and the two subunits of PDH kinase were different, suggesting that all subunits are different entities. The alpha subunit of the rat heart PDH kinase could be cleaved selectively by chymotrypsin with concomitant loss of kinase activity, as previously shown for the bovine kidney enzyme, suggesting that the catalytic activity of PDH kinase resides in the alpha subunit. The beta subunit appeared to be a different entity unique to the PDH kinase. Both kinases exhibited marked substrate specificity toward their respective complexes and would not inactivate heterologous complexes. The kinases possessed slightly different substrate specificity toward histones. BCKDH kinase preferentially phosphorylated histones in the order f1 greater than f2B much greater than f2A much greater than f3. The relative order for PDH kinase was the same, but f2A and f3 were considerably better substrates than they were for BCKDH kinase. These observations suggest that the kinases have different requirements for the structure of the protein at their phosphorylation sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号