首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In the context of aggression and courtship, Eigenmannia repeatedly interrupts its electric organ discharges (EODs) These interruptions (Fig. 1) contain low-frequency components as well as high-frequency transients and, therefore, stimulate ampullary and tuberous electroreceptors, respectively (Figs. 2, 3). Information provided by these two classes of receptors is relayed along separate pathways, via the electrosensory lateral line lobe (ELL) of the hindbrain, to the dorsal torus semicircularis (TSd) of the midbrain. Some neurons of the torus receive inputs from both types of receptors (Figs. 14, 15), and some respond predominantly to EOD interruptions while being rather insensitive to other forms of signal modulations (Figs. 12, 13). This high selectivity appears to result from convergence and gating of inputs from individually less selective neurons.Abbreviations CP central posterior thalamic nucleus - Df frequency difference between neighbor's EOD and fish's own - DPn dorsal posterior nucleus (thalamus) - EOD electric organ discharge - ELL electrosensory lateral line lobe - JAR jamming avoidance response - LMR lateral mesencephalic reticular formation - nE nucleus electrosensorius - nEb nucleus electrosensorius, beat-related area - nE nucleus electrosensorius, area causing rise of EOD frequency - nE nucleus electrosensorius, area causing fall of EOD frequency - nEar nucleus electrosensorius-acusticolateralis area - NPd nucleus praeeminentialis, pars dorsalis - PPn prepacemaker nucleus - PT pretectal nucleus - SE nucleus subelectrosensorius - TeO optic tectum - TSd dorsal (electrosensory) torus semicircularis - TSv ventral (mechano-sensory and auditory) torus semicircularis  相似文献   

2.
Wave-type weakly electric fish such as Eigenmannia produce continuous sinusoidal electric fields. When conspecifics are in close proximity, interaction of these electric fields can produce deficits in electrosensory function. We examined a neural correlate of such jamming at the level of the midbrain. Previous results indicate that neurons in the dorsal layers of the torus semicircularis can (1) respond to jamming signals, (2) respond to moving electrosensory stimuli, and (3) receive convergent information from the four sensory maps of the electrosensory lateral line lobe (ELL). In this study we recorded the intracellular responses of both tuberous and ampullary neurons to moving objects. Robust Gaussian-shaped or sinusoidal responses with half-height durations between 55 ms and 581 ms were seen in both modalities. The addition of ongoing global signals with temporal-frequencies of 5 Hz attenuated the responses to the moving object by 5 dB or more. In contrast, the responses to the moving object were not attenuated by the addition of signals with temporal frequencies of 20 Hz or greater. This occurred in both the ampullary and tuberous systems, despite the fact that the ampullary afferents to the torus originate in a single ELL map whereas the tuberous afferents emerge from three maps.  相似文献   

3.
Summary Previous anatomical and physiological studies of the gymnotoid electrosensory lateral line lobe (ELLL) suggest that the anatomically identified basilar and non-basilar pyramidal cells correspond to the physiologically defined E and I cells. Intracellular injection of horseradish peroxidase (HRP) into physiologically identified E and I cells confirms this hypothesis. The morphologies and physiological responses of the basilar and non-basilar pyramidal cells were compared. Both types of pyramidal cells have extensive apical dendritic trees that interact with a parallel fiber network in the ELLL. The apical dendritic trees of the non-basilar pyramidal cells have a wider spread along the rostrocaudal axis of the ELLL than those of the basilar pyramidal cells. This difference is discussed in reference to the interaction of these cell types with the parallel fibers of the ELLL. The density of apical dendritic branches was measured and related to the distance of these branches from the cell body. No obvious differences were seen between the dendritic density patterns of basilar and non-basilar pyramidal cells. An interesting correlation, however, exists between the atypical physiological characteristics of two basilar pyramidal cells and their dendritic density patterns. Two cells of the medial (ampullary) segment of the ELLL were analyzed. Like the pyramidal cells of the three lateral (tuberous) regions of the ELLL, the physiology of these cells appears to be related to the presence of an extended basilar process. The ampullary cells, however, have apical dendritic trees that are oriented orthogonally to the dendritic trees of the pyramidal cells.Abbreviations AM amplitude modulation - DML dorsal molecular layer - ELLL electrosensory lateral line lobe - EOD electric organ discharge - HRP horseradish peroxidase - LC lobus caudalis - Npd nucleus praeeminentialis dorsalis - PSTH post stimulus time histogram  相似文献   

4.
Summary Weakly electric fish (Gymnotiformes) emit quasi-sinusoidal electric organ discharges within speciesspecific frequency ranges. The electrosensory system is organized into 2 parallel pathways which convey either the amplitude or the timing of each electric organ discharge cycle. Two putative metabolic activity markers, calbindin D 28K and cytochrome c oxidase, and their relationship with the electrosensory nuclei of high- and low-frequency species were studied. Calbindin is found in the somata of the spherical neurons in the first-order electrosensory recipient nucleus, the electrosensory lateral-line lobe, and in layer VI of the midbrain's torus semicircularis, in Eigenmannia virescens, an intermediate-frequency species, and Apteronotus leptorhynchus, a high-frequency species. Calbindin immunoreactivity was completely absent in these nuclei in Sternopygus macrurus, a closely related, low-frequency species. Cytochrome c oxidase levels were inversely related to calbindin immunoreactivity since relatively high levels were observed in the electrosensory lateral-line lobe and torus semicircularis of S. macrurus but were absent in these nuclei in A. leptorhynchus. Our studies indicate that calbindin immunoreactivity is present in tonic, repetitively firing neurons with high frequencies.  相似文献   

5.
Mormryid electric fish (Gnathonemus petersii) respond to novel stimuli with an increase in the rate of the electric organ discharge (EOD). These novelty responses were used to measure the fish's ability to detect small changes in the amplitude and latency of an electrosensory stimulus. Responses were evoked in curarized fish in which the EOD was blocked but in which the EOD motor command continued to be emitted. An artificial EOD was provided to the fish at latencies of 2.4 to 14.4 ms following the EOD motor command.Novelty responses were evoked in response to transient changes in artificial EOD amplitude as small as 1% of baseline amplitude, and in latency as small as 0.1 ms. Changes in latency were effective only at baseline delays of less than 12.4 ms.The sensitivity to small changes in latency supports the hypothesis that latency is used as a code for stimulus intensity in the active electrolocation system of mormyrid fish. The results also indicate that a corollary discharge signal associated with the EOD motor command is used to measure latency.Abbreviations EOD electric organ discharge - ELL electrosensory lateral line lobe - epsp excitatory post synaptic potential  相似文献   

6.
Summary Following lateral line stimulation with surface waves single unit activity was recorded from the periphery, torus semicircularis, and tecturn opticum ofXenopus laevis. The reaction of units to varying stimulus directions was examined.The directional specificity (DS) was calculated on the basis of spike counts per stimulus using circular statistics. It was expressed as the length of the mean vector.Discharges of primary afferents of the ramus supraorbitalis and ramus infraorbitalis were phase locked to the stimulus to a varying degree depending on the location of the corresponding groups of neuromasts. Their DS was not better than 0.26.Lemniscal fibers, representing the ascending output of the medulla and units of the torus semicircularis reached a DS of 0.10–0.24 and 0.11–0.36 respectively. Neurons in the tectum opticum were the most sharply tuned with DS ranging between 0.81 and 0.96.The surroundings were represented by the best directions of two arrays of tectal units forming a map which is in register with the representation of the corresponding visual field of the animal.Abbreviations DS directional specificity - r.i.o. ramus infraorbitalis - r.s.o. ramus supraorbitalis  相似文献   

7.
Summary Brain regions participating in the control ofEigenmannia's electric organ discharge frequency were localized by electrical microstimulation and anatomically identified by means of horseradish peroxidase deposition. A diencephalic region was found which, when stimulated, caused electric organ discharge (EOD) frequency increases of similar magnitude and time course as the frequency increases seen during the jamming avoidance response. Single unit recordings from this region revealed one cell type which preferentially responded to stimuli that cause the acceleration phase of the jamming avoidance response (electric organ discharge frequency increase). A second cell type responded preferentially to stimuli which cause EOD frequency decrease, and both cell types were tuned to stimuli which evoked maximal jamming avoidance behaviors.The results of the horseradish peroxidase experiments showed that the recording and stimulation sites correspond to the previously described nucleus electrosensorius. Our results confirm the earlier finding that this nucleus receives output from the torus semicircularis and we also found that the N. electrosensorius projects to the mesencephalic prepacemaker nucleus. The prepacemaker projects to the medullary pacemaker nucleus which generates the commands that evoke electric organ discharges.The anatomical and physiological results described here establish this diencephalic region as a link between the major sensory processing region for the jamming avoidance response, the torus semicircularis, and a mesencephalic pre-motor region, the prepacemaker nucleus.Abbreviations AM amplitude modulation - DF Delta F - ELLL electrosensory lateral line lobe - EOD electric organ discharge - JAR jamming avoidance response - NE nucleus electrosensorius - PPN prepacemaker nucleus - PN pacemaker nucleus  相似文献   

8.
By means of evoked potential methods, a lateral line center in the thalamus of the bullhead catfish is here identified. The locus of this lateral line center corresponds to the mechanoreceptive thalamic zone and/or torothalamic tract identified by anatomical means. The thalamic lateral line area responds to acoustic stimuli as well as lateral line nerve shock but fails to respond to electroreceptor inputs that do cause responses in their special part of the midbrain torus semicircularis. The latency of the first peak of response to lateral line nerve shock, which is also the main response peak, is 30 ms for the thalamic zone compared to 15 ms for the earliest peak response in the mechanoreceptive part of the torus semicircularis. The thalamic response fatigues much more quickly than the toral response and has different dynamic properties to closely spaced stimulus pairs as well.  相似文献   

9.
Summary The responses of single neurons to visual and electrosensory stimulation were studied in the optic tectum of the weakly electric fishApteronotus albifrons. Most of the cells recorded in the region of the tectum studied, the anterior medial quadrant, were poorly responsive or completely insensitive to flashes of light or to bursts of AC electrical stimuli applied to the entire fish. However, these cells gave vigorous responses to moving visual or electrosensory stimuli. Most cells showed differences in their response contingent upon the direction of the stimulus movement and most received input from both the visual and electrosensory systems. Electrosensory responses to moving stimuli were depressed by jamming stimuli, 4 Hz amplitude modulation of the animal's electric organ discharge, presented simultaneously with the moving stimulus. However, the jamming signal presented alone typically evoked no response. Moving visual stimuli, presented simultaneously with the electrosensory, were usually able to restore the magnitude of a response toward its value in the unjammed situation. For most of the cells studied the receptive fields for vision and electroreception were in register. In some cases the visual and electrosensory components could be separated by presenting the two types of stimuli separately, or by presenting both simultaneously but with some amount of spatial separation, which causes the two to be misaligned relative to the fish. In other cases the individual responses could not be separated by spatial manipulations of the two stimuli and in these cases differences in the alignment of the two types of stimuli could cause changes in the intensity of the cells' responses.Abbreviations AM amplitude modulation - EOD electric organ discharge - PLLL posterior lateral line lobe  相似文献   

10.
1. Rhombencephalic and mesencephalic structures involved in electroreception were investigated by electrophysiological methods in the weakly electric fish Gnathonemus petersii. 2. The existence of a synchronous response to electric field stimulation of the fish in the mesencephalic exterolateral nucleus (n.ext.-lat.mes) with 2.5-3 ms latency was confirmed. The lateral line lobe nucleus (nLLL) is identified as the rhombencephalic relay for the mesencephalic responses because of the short latency synchronous response in the nLLL obtained by threshold stimulation of the posterior lateral line nerve. Responses in both the nLLL and the n.ext.-lat.mes. appear and their amplitudes increase simultaneously with increasing stimulus intensity. 3. Comparison of latencies supports a three-neuron pathway hypothesis which also agrees well with the various functional properties described. 4. The nLLL-n.ext.-lat.mes. pathway is blocked sharply for a period of 1 ms occurring 3 ms after the electric organ discharge (EOD). This inhibitory period is phase-related to the Mesencephalic Command Associated Signal (MCAS) of Aljure (1946) ; The phase relation is such that no response is observed to the fish's own EOD. 5. Long-lasting responses of 10-12 ms duration to higher stimulation intensities were obtained in the ganglionic layer of the lateral line lobe (LLL). Intensities evoking maximal responses in the nLLL and n.ext.lat.mes. are still threshold stimulation for lateral line lobe responses. 6. Long-lasting responses (of the same order as in the LLL) to the fish' own EOD were observed in the mesencephalic lateral nucleus. Responses to artificial electric pulses were obtained only if delivered in a certain phase realtion to the MCAS. The MCAS displays a facilitating effect on the slow conducting electrosensory system. 7. Results indicate the existence in mormyrids of a double, fast and slow conducting, electrosensory system similar to that of gymnotid fish. The mormyrids can control both of these electrosensory systems by means of the MCAS, the effect of which is opposite for the same time period on the two systems.  相似文献   

11.
Summary Activity of efferent fibers was recorded from the ramus ophthalmicus superficialis of the head lateral line nerve and the ramus medialis of the trunk lateral line nerve of the axolotl Ambystoma mexicanum. Baseline activity and activity evoked by sensory stimuli were examined. Electrical stimulation of selected branches was used to determine the conduction velocity and the branching pattern of efferent fibers. The influence of lesions at different levels in the CNS on efferent activity was studied.Up to 5 units with baseline activity were found in a single ramus of the lateral line nerve. Discharge rates were variable and highly irregular; they differed between units of the same branch. Bursting activity occurred in 62% of the units. Movements of the animal were accompanied by activity in up to 8 efferent units in a single nerve.Efferent activity could be elicited or modified by stimulation of visual, labyrinthine, somatosensory, and lateral line systems. Stimulation of the electrosensory system had no effect. Individual efferent neurons innervated different fields in the lateral line periphery. Conduction velocities of efferent fibers ranged from 5 to 12 m/s.Efferent units received input from various sources at different brain levels up to the diencephalon. These in puts determined the baseline activity. The mechanosensory input was mediated at the medullary level.Abbreviations r.m. ramus medialis - r.o.s. ramus ophthalmicus superficialis - r.s. ramus superior  相似文献   

12.
Summary The complex of the diencephalic nucleus electrosensorius (nE) provides an interface between the electrosensory processing performed by the torus semicircularis and the control of specific behavioral responses. The rostral portion of the nE comprises two subdivisions that differ in the response properties and projection patterns of their neurons. First, the nEb (Fig. 1 B), which contains neurons that are driven almost exclusively by beat patterns generated by the interference of electric organ discharges (EODs) of similar frequencies. Second, the area medial to the nEb, comprising the lateral pretectum (PT) and the nE-acusticolateralis region (nEar, Fig. 1 B-D), which contains neurons excited predominantly by EOD interruptions, signals associated with aggression and courtship. Neurons in the second area commonly receive convergent inputs originating from ampullary and tuberous electroreceptors, which respond to the low-frequency and high-frequency components of EOD interruptions, respectively. Projections of these neurons to hypothalamic areas linked to the pituitary may mediate modulations of a fish's endocrine state that are caused by exposure to EOD interruptions of its mate.Abbreviations a axon - ATh anterior thalamic nucleus - CCb corpus cerebelli - CE central nucleus of the inferior lobe - CP central posterior thalamic nucleus - Df frequency difference between neighbor's EOD and fish's own - DFl nucleus diffusus lateralis of the inferior lobe - DFm nucleus diffusus medialis of the inferior lobe - DTn dorsal tegmental nucleus - EOD electric organ discharge - G glomerular nucleus - Hc caudal hypothalamus - Hd dorsal hypothalamus - Hl lateral hypothalamus - Hv ventral hypothalamus - JAR jamming avoidance response - LL lateral lemniscus - MGT magnocellular tegmental nucleus - MLF medial longitudinal fasciculus - nB nucleus at the base of the optic tract - nE nucleus electrosensorius - nEar nucleus electrosensorius-acusticolateral region - nEb nucleus electrosensorius-beat related area - nE nucleus electrosensorius, area causing rise of EOD frequency - nE nucleus electrosensorius, area causing fall of EOD frequency - nLT nucleus tuberis lateralis - nLV nucleus lateralis valvulae - PC posterior commissure - Pd nucleus praeeminentialis, pars dorsalis - PeG periglomerular complex - PG preglomerular nucleus - PLm medial division of the perilemniscal nucleus - Pn pacemaker nucleus - PPn prepacemaker nucleus - PT pretectal nucleus - PTh prethalamic nucleus - R red nucleus - Sc suprachiasmatic nucleus - SE nucleus subelectrosensorius - TAd nucleus tuberis anterior-dorsal subdivision - TAv nucleus tuberis anterior-ventral subdivision - TeO optic tectum - TL torus longitudinalis - TSd dorsal (electrosensory) torus semicircularis - TSv ventral (mechanosensory and auditory) torus semicircularis - tTB tecto-bulbar tract - VCb cerebellar valvula - VP valvular peduncle - VPn nucleus of the valvular peduncle  相似文献   

13.
The electric fish, Eigenmannia, will smoothly shift the frequency of its electric organ discharge away from an interfering electric signal. This shift in frequency is called the jamming avoidance response (JAR). In this article, we analyze the behavioral development of the JAR and the anatomical development of structures critical for the performance of the JAR. The JAR first appears when juvenile Eigenmannia are approximately 1 month old, at a total length of 13–18 mm. We have found that the establishment of much of the sensory periphery and of central connections precedes the onset of the JAR. We describe three aspects of the behavioral development of the JAR: (a) the onset and development of the behavior is closely correlated with size, not age; (b) the magnitude (in Hz) of the JAR increases with size until the juveniles display values within the adult range (10–20 Hz) at a total length of 25–30 mm; and (3) the JAR does not require prior experience or exposure to electrical signals. Raised in total electrical isolation from the egg stage, animals tested at a total length of 25 mm performed a correct JAR when first exposed to the stimulus. We examine the development of anatomical areas important for the performance of the JAR: the peripheral electrosensory system (mechano- and electroreceptors and peripheral nerves); and central electrosensory pathways and nuclei [the electrosensory lateral line lobe (ELL), the lateral lemniscus, the torus semicircularis, and the pacemaker nucleus]. The first recognizable structures in the developing electrosensory system are the peripheral neurites of the anterior lateral line nerve. The afferent nerves are established by day 2, which is prior to the formation of receptors in the epidermis. Thus, the neurites wait for their targets. This sequence of events suggests that receptor formation may be induced by innervation of primordial cells within the epidermis. Mechanoreceptors are first formed between day 3 and 4, while electroreceptors are first formed on day 7. Electroreceptor multiplication is observed for the first time at an age of 25 days and correlates with the onset of the JAR. The somata of the anterior lateral line nerve ganglion project afferents out to peripheral electroreceptors and also send axons centrally into the ELL. The first electroreceptive axons invade the ELL by day 6, and presumably a rough somatotopic organization and segmentation within the ELL may arise as early as day 7. Axonal projections from the ELL to the torus develop after day 18. Within the torus semicircularis, giant cells are necessary for the performance of the JAR. Giant cell numbers increase exponentially during development and the onset of the JAR coincides with a minimum of at least 150 giant cells and the attainment of a total length of at least 15 mm and at least 150 giant cells. Pacemaker and relay cells comprise the adult Eigenmannia pacemaker nucleus. The growth and differentiation of these cell types also correlates with the onset of the JAR in developing animals. We describe a gradual improvement of sensory abilities, as opposed to an explosive onset of the mature JAR. We further suggest that this may be a rule common in most developing behavioral systems. © 1992 John Wiley & Sons, Inc.  相似文献   

14.
The responses of E-cells, basilar pyramidal cells, of the electrosensory lateral line lobe (ELLL) were studied in normal animals (Apteronotus leptorhynchus) and in fish in which a component of the descending input from the midbrain n. praeeminentialis to the ELLL was interrupted by lesions or by application of local anesthetics. This treatment increased the responsiveness of these neurons by 100 to 300%. A method is described by which the animal's electric organ discharge (EOD) can be increased or decreased in amplitude. Responses of E-cells to a brief stationary electrosensory stimulus and to moving electrolocation targets were studied in normal and in lesioned animals with normal and altered EOD amplitudes. Large reductions in EOD amplitude, approximately 50%, result in no significant changes in the average size of E-cells' responses to either type of electrosensory stimulus in normal animals. Interruption of the descending input, however, results in a loss of the E-cells' ability to maintain constant response size when the EOD amplitude is reduced. Increases in EOD amplitude cause reductions in the size of E-cell responses to the moving electrolocation targets and to the stationary stimulus. The effects of increased EOD amplitude are present in normal animals and in animals in which the descending input is interrupted. The descending input to the ELLL seems to function as a gain control mechanism that is capable of compensating for losses in stimulus strength resulting from reduced EOD amplitude. The component of the descending input studied here does not seem to play a role in the response of the system to increases in EOD amplitude. These results are discussed in conjunction with the known details of the ELLL circuitry and its connections with other brain areas.  相似文献   

15.
Multiunit activity and slow local field potentials show Omitted Stimulus Potentials (OSP) in the electrosensory system in rays (Platyrhinoidis triseriata, Urolophus halleri) after a missing stimulus in a 3 to >20 Hz train of V pulses in the bath, at levels from the primary medullary nucleus to the telencephalon. A precursor can be seen in the afferent nerve. The OSP follows the due-time of the first omitted stimulus with a, usually, constant main peak latency, 30–50 ms in medullary dorsal nucleus, 60–100 ms in midbrain, 120–190 ms in telencephalon — as though the brain has an expectation specific to the interstimulus interval (ISI). The latency, form and components vary between nerve, medulla, mid-brain and forebrain. They include early fast waves, later slow waves and labile induced rhythms. Responsive loci are quite local. Besides ISI, which exerts a strong influence, many factors affect the OSP slightly, including train parameters and intensity, duration and polarity of the single stimulus pulses. Jitter of ISI does not reduce the OSP substantially, if the last interval equals the mean; the mean and the last interval have the main effect on both amplitude and latency.Taken together with our recent findings on visually evoked OSPs, we conclude that OSPs do not require higher brain levels or even the complexities of the retina. They appear in primary sensory nuclei and are then modified at midbrain and telencephalic levels. We propose that the initial processes are partly in the receptors and partly in the first central relay including a rapid increase of some depressing influence contributed by each stimulus. This influence comes to an ISI-specific equilibrium with the excitatory influence; withholding a stimulus and hence its depressing influence causes a rebound excitation with a specific latency.Abbreviations DN dorsal nucleus of medullary lateral line lobe - EEG electroencephalogram - EP evoked potential - ERP event related potential - IR induced rhythm - ISI interstimulus interval - OSP omitted stimulus potential - MLN mesencephalic lateral nucleus - P75 positive peak at 75 ms  相似文献   

16.
An important problem in sensory processing is deciding whether fluctuating neural activity encodes a stimulus or is due to variability in baseline activity. Neurons that subserve detection must examine incoming spike trains continuously, and quickly and reliably differentiate signals from baseline activity. Here we demonstrate that a neural integrator can perform continuous signal detection, with performance exceeding that of trial-based procedures, where spike counts in signal- and baseline windows are compared. The procedure was applied to data from electrosensory afferents of weakly electric fish (Apteronotus leptorhynchus), where weak perturbations generated by small prey add ~1 spike to a baseline of ~300 spikes s–1. The hypothetical postsynaptic neuron, modeling an electrosensory lateral line lobe cell, could detect an added spike within 10–15 ms, achieving near ideal detection performance (80–95%) at false alarm rates of 1–2 Hz, while trial-based testing resulted in only 30–35% correct detections at that false alarm rate. The performance improvement was due to anti-correlations in the afferent spike train, which reduced both the amplitude and duration of fluctuations in postsynaptic membrane activity, and so decreased the number of false alarms. Anti-correlations can be exploited to improve detection performance only if there is memory of prior decisions.Abbreviations B binomial - CV coefficient of variation - EOD electric organ discharge - ELL electrosensory lateral line lobe - EPSP excitatory postsynaptic potential - ISI interspike interval - M0 Markov order zero - M1 Markov order one - N noise - OC operating characteristic - PDF probability density function - ROC receiver operating characteristic - S signal - SNR signal-to-noise ratio - S+N signal in noise  相似文献   

17.
Corollary discharge signals associated with the motor command that elicits the electric organ discharge are prominent in the electrosensory lobe of mormyrid fish (Gnathonemus petersii). Central pathways and structures that convey these signals from the motor command nucleus to the electrosensory lobe are known anatomically, but these structures and their contributions to the various corollary discharge phenomena have not been examined physiologically. This study examines one such structure, the mesencephalic command associated nucleus (MCA).Recordings from MCA cells show a highly stereotyped two spike response. The first spike of the response has a latency of about 2.5 ms following the initiation of the electric organ discharge (EOD) motor command which is about 5.5 ms before the occurrence of the EOD.Results from stimulation and lesion experiments indicate that MCA is responsible for: 1) the gate-like corollary discharge-driven inhibition of the knollenorgan pathway; 2) the gate-like corollary discharge-driven excitation of granule cells in the mormyromast regions of the electrosensory lobe; and 3) various excitatory effects on other cells in the mormyromast regions.Some corollary discharge phenomena are still present after MCA lesions, including the earliest corollary discharge effects and the plasticity that follows pairing with electrosensory stimuli. These phenomena must be mediated by structures other than MCA.Abbreviations BCA bulbar command associated nucleus - C EOD motor command - C3 central cerebellar lobule 3 - COM EOD motor command nucleus - DLZ dorsolateral zone of ELL cortex - EGa eminentia granularis anterior - EGp eminentia granularis posterior - ELa nucleus exterolateralis anterior - ELL electrosensory lobe - ELLml molecular layer of ELL cortex - EOD electric organ discharge - gang ganglion layer - gran granule layer - jlem juxtalemniscal region - JLl lateral juxtalobar nucleus - JLm medial juxtalobar nucleus - lat nucleus lateralis - ll lateral lemniscus - MCA mesencephalic command associated nucleus - mol molecular layer - MOml molecular layer of the medial octavolateral nucleus - MRN medullary relay nucleus - MZ medial zone of ELL cortex - nALL anterior lateral line nerve - NELL nucleus of the electrosensory lobe - nX cranial nerve X (vagus) - OT optic tectum - PCA paratrigeminal command associated nucleus - pee praeeminentialis electrosensory tract - plex plexiform layer - prae nucleus praeeminentialis - sublem sublemniscal nucleus - TEL telencephalon - VLZ ventrolateral zone of ELL cortex - vped valvular peduncle  相似文献   

18.
Summary Single unit spikes and evoked field potentials were recorded in different parts and depths of the corpus cerebelli and auricle of immobilized rays before and after stimulating with light, electric fields, touch, tail bending and direct shock to mechanoreceptive nerves of the lateral line.Discrete areas of the cerebellum are responsive to these modalities and the areas show limited overlap; they are all distinct from the area reported by Plassmann to be responsive to angular acceleration. The visual and tactile-proprioceptive areas are large; the electric area is small. Most units are excited only by one modality.The tail is represented only in the posterior lobe; trigeminal innervation extends from the posterior onto the anterior lobe, suggesting some topographic projection.The dynamic characteristics of the responses were examined particulary in the visual units. To a flash, units discharge up to six bursts of spikes in 500 ms. This pattern is reduced at repetition rates > 1/s; above ca. 4/s units tend to fire irregularly. Various kinds of units are found in respect to the succession of responses to short trains of flashes. Some units fire much better to objects moving in a limited visual field with a certain direction and rate.Abbreviation EP evoked potential  相似文献   

19.
Recordings within the posterior eminentia granularis of the weakly electric fish, Apteronotus leptorhynchus, revealed multiple types of proprioceptive units responsive to changes in the position of the animal's trunk and tail. Intracellular labelling showed that the proprioceptor recordings were made from axons that ramify extensively within the EGp. The location of the somata giving rise to these axons is presently unknown. Electroreceptor afferent responses to electric organ discharge amplitude modulations caused by movement of the animal's tail were compared to responses caused by electronically generated AMs of similar amplitude and time course. These did not differ. Electrosensory lateral line lobe pyramidal cells responded significantly less to electric organ discharge amplitude modulations caused by changing the animal's posture as compared to electronically produced AMs, suggesting that central mechanisms attenuate pyramidal cell responses to reafferent electrosensory inputs. Experiments in which the pattern of reafferent input associated with changes in posture was altered revealed that the pyramidal cells learn, over a time course of several minutes, to reject new patterns of input. Both proprioceptive input and descending electrosensory input to the posterior eminentia granularis are involved in generating the observed plastic changes in pyramidal cell responsiveness.Abbreviations AM amplitude modulation - EGp posterior eminentia granularis - ELL electrosensory lateral line lobe - EOD electric organ discharge - HRP horseradish peroxidase - LTD long-term depression - LTP long-term potentiation  相似文献   

20.
Paddlefish are uniquely adapted for the detection of their prey, small water fleas, by primarily using their passive electrosensory system. In a recent anatomical study, we found two populations of secondary neurons in the electrosensory hind brain area (dorsal octavolateral nucleus, DON). Cells in the anterior DON project to the contralateral tectum, whereas cells in the posterior DON project bilaterally to the torus semicircularis and lateral mesencephalic nucleus. In this study, we investigated the properties of both populations and found that they form two physiologically different populations. Cells in the posterior DON are about one order of magnitude more sensitive and respond better to stimuli with lower frequency content than anterior cells. The posterior cells are, therefore, better suited to detect distant prey represented by low-amplitude signals at the receptors, along with a lower frequency spectrum, whereas cells in the anterior DON may only be able to sense nearby prey. This suggests the existence of two distinct channels for electrosensory information processing: one for proximal signals via the anterior DON and one for distant stimuli via the posterior DON with the sensory input fed into the appropriate ascending channels based on the relative sensitivity of both cell populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号