共查询到20条相似文献,搜索用时 15 毫秒
1.
The ultimate membrane localization and function of most of the 185 predicted Pseudomonas aeruginosa PAO1 lipoproteins remain unknown. We constructed a fluorescent lipoprotein, CSFPOmlA-ChFP, by fusing the signal peptide and the first four amino acids of the P. aeruginosa outer membrane lipoprotein OmlA to the monomeric red fluorescent protein mCherry (ChFP). When cells were plasmolyzed with 0.5 M NaCl, the inner membrane separated from the outer membrane and formed plasmolysis bays. This permits the direct observation of fluorescence in either the outer or inner membrane. CSFPOmlA-ChFP was shown to localize in the outer membrane by fluorescence microscopy and immunoblotting analysis of inner and outer membrane fractions. The site-directed substitution of the amino acids at positions +2, +3, and +4 in CSFPOmlA-ChFP was performed to test the effects on lipoprotein localization of a series of amino acid sequences selected from a panel of predicted lipoproteins. We confirmed Asp+2 and Lys+3 Ser+4 function as inner membrane retention signals and identified four novel inner membrane retention signals: CK+2 V+3 E+4, CG+2 G+3 G+4, CG+2 D+3 D+4, and CQ+2 G+3 S+4. These inner membrane retention signals are found in 5% of the 185 predicted P. aeruginosa lipoproteins. Full-length chimeras of predicted lipoproteins PA4370 and PA3262 fused to mCherry were shown to reside in the inner membrane and showed a nonuniform or patchy distribution in the membrane. The optical sectioning of cells producing PA4370CGDD-ChFP and PA3262CDSQ-ChFP by confocal microscopy improved the resolution and indicated a helix-like localization pattern in the inner membrane. The method described here permits the in situ visualization of lipoprotein localization and should work equally well for other membrane-associated proteins. 相似文献
2.
Terada M Kuroda T Matsuyama SI Tokuda H 《The Journal of biological chemistry》2001,276(50):47690-47694
Escherichia coli lipoproteins are anchored to either the inner or outer membrane through fatty acyl chains covalently attached to an N-terminal cysteine. Aspartate at position 2 functions to retain lipoproteins in the inner membrane, although the retention is perturbed depending on the residue at position 3. We previously revealed that LolCDE and LolA play critical roles in this lipoprotein sorting. To clarify the sorting signals, the LolA-dependent release of lipoprotein derivatives having various residues at positions 2 and 3 was examined in spheroplasts. When the residue at position 3 was serine, only aspartate at position 2 caused the retention of lipoproteins in spheroplasts. We then examined the release of derivatives having aspartate at position 2 and various residues at position 3. Strong inner membrane retention occurred with a limited number of species of residues at position 3. These residues were present at position 3 of native lipoproteins having aspartate at position 2, whereas residues that inhibited the retention were not. It was also found that a strong inner membrane retention signal having residues other than aspartate at position 2 could be formed through the combination of the residues at positions 2 and 3. These results indicate that the inner membrane localization of native lipoproteins is ensured by the use of a limited number of strong inner membrane retention signals. 相似文献
3.
Globomycin-resistant mutants of Escherichia coli have been isolated and partially characterized. Approximately 2-5% of these mutants synthesize structurally altered Braun's lipoprotein. The majority of these mutants contain unprocessed and unmodified prolipoprotein. One mutant is found to contain modified, processed, but structurally altered lipoprotein. Mutants containing lipid-deficient prolipoprotein or lipoprotein also show increased resistance to globomycin. These results suggest that the inhibition of processing of modified prolipoprotein by globomycin may require fully modified prolipoprotein as the biochemical target of this novel antibiotic. Our failure to isolate mutant containing cleaved but unmodified lipoprotein among globomycin-resistant mutants is consistent with the possibility that modification of prolipoprotein precedes the removal of signal sequence by a unique signal peptidase. Recent evidence indicates that the minor lipoproteins in the cell envelope of E. coli are also synthesized as lipid-containing prolipoproteins and the processing of these prolipoproteins is inhibited by globomycin. These results suggest the existence of modifying enzymes in E. coli which would transfer glyceryl and fatty acyl moieties to cysteine residues located in the proper sequences of the precursor proteins. This speculation is confirmed by our demonstration that Bacillus licheniformis penicillinase synthesized in E. coli as well as in B. licheniformis is a lipoprotein containing glyceride-cysteine at its NH2-terminus. 相似文献
4.
For a long time, it was generally assumed that the biogenesis of inner membrane proteins in Escherichia coli occurs spontaneously, and that only the translocation of large periplasmic domains requires the aid of a protein machinery, the Sec translocon. However, evidence obtained in recent years indicates that most, if not all, inner membrane proteins require the assistance of protein factors to reach their native conformation in the membrane. Here, we review and discuss recent advances in our understanding of the biogenesis of inner membrane proteins in E. coli. 相似文献
5.
The inner membrane proteome of the model organism Escherichia coli is composed of inner membrane proteins, lipoproteins and peripherally attached soluble proteins. Our knowledge of the biogenesis of inner membrane proteins is rapidly increasing. This is in particular true for the early steps of biogenesis - protein targeting to and insertion into the membrane. However, our knowledge of inner membrane protein folding and quality control is still fragmentary. Furthering our knowledge in these areas will bring us closer to understand the biogenesis of individual inner membrane proteins in the context of the biogenesis of the inner membrane proteome of Escherichia coli as a whole. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes. 相似文献
6.
The phospholipids of Escherichia coli consist mainly of phosphatidylethanolamine, phosphatidylglycerol (PG), and cardiolipin. PG makes up ~25% of the cellular phospholipid and is essential for growth in wild-type cells. PG is synthesized on the inner surface of the inner membrane from cytidine diphosphate-diacylglycerol and glycerol 3-phosphate, generating the precursor phosphatidylglycerol-phosphate (PGP). This compound is present at low levels (~0.1% of the total lipid). Dephosphorylation of PGP to PG is catalyzed by several PGP-phosphatases. The pgpA and pgpB genes, which encode structurally distinct PGP-phosphatases, were identified previously. Double deletion mutants lacking pgpA and pgpB are viable and still make PG, suggesting the presence of additional phosphatase(s). We have identified a third PGP-phosphatase gene (previously annotated as yfhB but renamed pgpC) using an expression cloning strategy. A mutant with deletions in all three phosphatase genes is not viable unless covered by a plasmid expressing either pgpA, pgpB, or pgpC. When the triple mutant is covered with the temperature-sensitive plasmid pMAK705 expressing any one of the three pgp genes, the cells grow at 30 but not 42 °C. As growth slows at 42 °C, PGP accumulates to high levels, and the PG content declines. PgpC orthologs are present in many other bacteria. 相似文献
7.
8.
Bifunctional cross-linking reagents were used to identify cell envelope proteins that interacted with the murein sacculus. This revealed that a number of [3H]leucine-labeled proteins and [3H]palmitate-labeled lipoproteins were reproducibly cross-linked to the sacculus in plasmolyzed cells. The results suggested that most of the cell envelope lipoproteins, and not only the murein lipoprotein, mediate interactions between the murein sacculus and the inner and/or outer membrane of the cell. 相似文献
9.
Fröderberg L Houben E Samuelson JC Chen M Park SK Phillips GJ Dalbey R Luirink J De Gier JW 《Molecular microbiology》2003,47(4):1015-1027
To further our understanding of inner membrane protein (IMP) biogenesis in Escherichia coli, we have accomplished the widest in vivo IMP assembly screen so far. The biogenesis of a set of model IMPs covering most IMP structures possible has been studied in a variety of signal recognition particle (SRP), Sec and YidC mutant strains. We show that the assembly of the complete set of model IMPs is assisted (i.e. requires the aid of proteinaceous factors), and that the requirements for assembly of the model IMPs into the inner membrane differ significantly from each other. This indicates that IMP assembly is much more versatile than previously thought. 相似文献
10.
11.
MsbA is an essential ABC transporter in Escherichia coli required for exporting newly synthesized lipids from the inner to the outer membrane. It remains uncertain whether or not MsbA catalyzes trans-bilayer lipid movement (i.e. flip-flop) within the inner membrane. We now show that newly synthesized lipid A accumulates on the cytoplasmic side of the inner membrane after shifting an E. coli msbA missense mutant to the non-permissive temperature. This conclusion is based on the selective inhibition of periplasmic, but not cytoplasmic, covalent modifications of lipid A that occur in polymyxin-resistant strains of E. coli. The accessibility of newly synthesized phosphatidylethanolamine to membrane impermeable reagents, like 2,4,6-trinitrobenzene sulfonic acid, is also reduced severalfold. Our data showed that MsbA facilitates the rapid translocation of some lipids from the cytoplasmic to the periplasmic side of the inner membrane in living cells. 相似文献
12.
13.
Energy requirements for protein translocation across the Escherichia coli inner membrane 总被引:5,自引:0,他引:5
B. L. Geller 《Molecular microbiology》1991,5(9):2093-2098
Both ATP and an electrochemical potential play roles in translocating proteins across the inner membrane of Escherichia coli. Recent discoveries have dissected the overall transmembrane movement into separate subreactions with different energy requirements, identified a translocation ATPase, and reconstituted both energy-requiring steps of the reaction from purified components. A more refined understanding of the energetics of this fundamental process is beginning to provide answers about the basic issues of how proteins move across the hydrophobic membrane barrier. 相似文献
14.
Molecular chaperones and protein translocation across the Escherichia coli inner membrane 总被引:29,自引:0,他引:29
C.A. Kumamoto 《Molecular microbiology》1991,5(1):19-22
Proteins that are able to translocate across biological membranes assume a loosely folded structure. In this review it is suggested that the loosely folded structure, referred to here as the 'pre-folded conformation', is a particular structure that interacts favourably with components of the export apparatus. Two soluble factors, SecB and GroEL, have been implicated in maintenance of the pre-folded conformation and have been termed 'molecular chaperones'. Results suggest that SecB may be a chaperone that is specialized for binding to exported protein precursors, while GroEL may be a general folding modulator that binds to many intracellular proteins. 相似文献
15.
The inner membrane subassembly of the enteropathogenic Escherichia coli bundle-forming pilus machine
Type IV pili (Tfps) are filamentous surface appendages expressed by Gram-negative microorganisms and play numerous roles in bacterial cell biology. Tfp biogenesis machineries are highly conserved and resemble protein secretion and DNA uptake systems. Although components of Tfp biogenesis systems have been identified, it is not known how they interact to form these machineries. Using the bundle-forming pilus (BFP) of enteropathogenic Escherichia coli as a model Tfp system, we provide evidence of a cytoplasmic membrane subassembly of the Tfp assembly machine composed of putative cytoplasmic nucleotide-binding and cytoplasmic membrane proteins. A combination of genetic, biochemical and biophysical approaches revealed interactions among putative cytoplasmic nucleotide-binding proteins BfpD and BfpF and cytoplasmic membrane proteins BfpC and BfpE of the BFP biogenesis machine. The polytopic membrane protein BfpE appears to be a central component of this subassembly as it interacts with BfpC, BfpD and BfpF. We report that BFP biogenesis probably requires interactions among BfpC, BfpD and BfpE, whereas BFP retraction requires interaction of the PilT-like putative ATPase BfpF with a conserved domain of BfpE. BfpE is the first protein that is not a member of the PilT family to be implicated in Tfp retraction. Furthermore, we found that the putative ATPases BfpD and BfpF play antagonistic roles in BFP biogenesis and retraction, respectively, by interacting with distinct domains of the BFP biogenesis machine. 相似文献
16.
17.
18.
Identification of an Escherichia coli inner membrane polypeptide specified by a lambda-tonB transducing. 总被引:1,自引:0,他引:1
Analysis by polyacrylamide gel electrophoresis of the proteins coded by a λB transducing phage, after infection of UV-irradiated bacteria, revealed the presence of at least 7 new polypeptides. Three of these were identified as proteins of the operon whilst three others were deleted by a spontaneous mutation in the B region carried by the phage. A single polypeptide, molecular weight 40,000 was absent from a phage carrying a proflavine induced mutation in B. We conclude that this protein, which was localised in the inner membrane by sarkosyl fractionation of the envelope, is the product. 相似文献
19.
Sakamoto C Satou R Tokuda H Narita S 《Biochemical and biophysical research communications》2010,401(4):586-591
In Gram-negative bacteria, lipoproteins are targeted to either the inner or outer membrane depending on their sorting signals. An ABC transporter LolCDE complex in Escherichia coli releases outer membrane-specific lipoproteins. Inner membrane-specific lipoproteins remain in the inner membrane because they each have a LolCDE-avoidance signal and therefore are not released by LolCDE. Only the LolC(A40P) mutation was previously found to cause outer membrane localization of lipoproteins despite their inner membrane-retention signals. Here, we isolated several new LolCDE mutants that cause outer membrane localization of lipoproteins possessing LolCDE-avoidance signals. Mutations were found in all three subunits of LolCDE, including the cytoplasmic ATPase subunit LolD. However, the extent of outer membrane sorting of inner membrane-specific lipoproteins differed depending on the mutation. Based on these observations, the molecular events underlying the recognition of lipoproteins by the LolCDE complex are discussed. 相似文献
20.
Millman JS Qi HY Vulcu F Bernstein HD Andrews DW 《The Journal of biological chemistry》2001,276(28):25982-25989
Targeting of many polytopic proteins to the inner membrane of prokaryotes occurs via an essential signal recognition particle-like pathway. FtsY, the Escherichia coli homolog of the eukaryotic signal recognition particle receptor alpha-subunit, binds to membranes via its amino-terminal AN domain. We demonstrate that FtsY assembles on membranes via interactions with phosphatidylethanolamine and with a trypsin-sensitive component. Both interactions are mediated by the AN domain of FtsY. In the absence of phosphatidylethanolamine, the trypsin-sensitive component is sufficient for binding and function of FtsY in the targeting of membrane proteins. We propose a two-step mechanism for the assembly of FtsY on the membrane similar to that of SecA on the E. coli inner membrane. 相似文献