首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of mild hypoxia on brain oxyhemoglobin, cytochrome a,a3 redox status, and cerebral blood volume were studied using near-infrared spectroscopy in eight healthy volunteers. Incremental hypoxia reaching 70% arterial O2 saturation was produced in normocapnia [end-tidal PCO2 (PETCO2) 36.9 +/- 2.6 to 34.9 +/- 3.4 Torr] or hypocapnia (PETCO2 32.8 +/- 0.6 to 23.7 +/- 0.6 Torr) by an 8-min rebreathing technique and regulation of inspired CO2. Normocapnic hypoxia was characterized by progressive reductions in arterial PO2 (PaO2, 89.1 +/- 3.5 to 34.1 +/- 0.1 Torr) with stable PETCO2, arterial PCO2 (PaCO2), and arterial pH and resulted in increases in heart rate (35%) systolic blood pressure (14%), and minute ventilation (5-fold). Hypocapnic hypoxia resulted in progressively decreasing PaO2 (100.2 +/- 3.6 to 28.9 +/- 0.1 Torr), with progressive reduction in PaCO2 (39.0 +/- 1.6 to 27.3 +/- 1.9 Torr), and an increase in arterial pH (7.41 +/- 0.02 to 7.53 +/- 0.03), heart rate (61%), and ventilation (3-fold). In the brain, hypoxia resulted in a steady decline of cerebral oxyhemoglobin content and a decrease in oxidized cytochrome a,a3. Significantly greater loss of oxidized cytochrome a,a3 occurred for a given decrease in oxyhemoglobin during hypocapnic hypoxia relative to normocapnic hypoxia. Total blood volume response during hypoxia also was significantly attenuated by hypocapnia, because the increase in volume was only half that of normocapnic subjects. We conclude that cytochrome a,a3 oxidation level in vivo decreases at mild levels of hypoxia. PaCO is an important determinant of brain oxygenation, because it modulates ventilatory, cardiovascular, and cerebral O2 delivery responses to hypoxia.  相似文献   

2.
The relative amount of regional cerebral oxygen transport was compared between different preterm infants by performing measurements of cerebral blood flow velocity, mean arterial blood pressure, whole blood viscosity and haemoglobin content for each individual. In addition the percentage of fetal haemoglobin was determined. On 25 occasions measurements of fetal haemoglobin and cerebral oxygen transport have been performed prior to and following a blood transfusion with adult red blood cells. Comparison of the data for cerebral oxygen transport suggests that the actual amount of cerebral oxygen transport is lowest at fetal haemoglobin levels below 30% and will increase progressively as soon as the percentage of fetal haemoglobin rises about 30%. Thus, at increasing fetal haemoglobin levels, cerebral haemodynamic mechanisms in the human neonate cause elevations of regional cerebral blood flow and oxygen transport. The found increase of cerebral blood flow and oxygen transport at high fetal haemoglobin levels will minimize the impeded dissociation and delivery of oxygen to brain tissues.  相似文献   

3.
We studied the effects of hypoxia on cerebral cortical and intestinal perfusion and metabolism in normocythemic hyperviscous newborn pigs. Seven pigs were made hyperviscous by an injection of cryoprecipitate, increasing viscosity from 5.8 +/- 0.9 to 9.0 +/- 1. 2 (SD) cycles/s. Six normoviscous pigs received 0.9% NaCl. Reducing the inspired O(2) decreased the arterial O(2) content (Ca(O(2))) from 9.5 +/- 1.6 to 3.6 +/- 1.3 ml O(2)/100 ml. Increases in brain and decreases in gastrointestinal blood flow at the lower Ca(O(2)) values were similar between the groups. During hypoxia, blood flow to stomach, distal intestinal mucosa, and large intestines was lower (-50, -23, and -28%, respectively) in the hyperviscous than normoviscous group. At the lower Ca(O(2)) values, cerebral cortical vascular resistance decreased in both groups and intestinal vascular resistance increased (+257%) in the hyperviscous but not in the normoviscous group. During hypoxia, systemic oxygen delivery decreased, extraction increased, and uptake did not change; cerebral cortical O(2) delivery, extraction, and uptake did not change; and intestinal O(2) delivery decreased, extraction increased, and uptake did not change in both groups. Our study demonstrated that 1) during hypoxia, increases in systemic O(2) extraction compensated for decreases in delivery and systemic uptake did not change; vasodilation sustained cerebral cortical O(2) delivery and preserved metabolism; increases in intestinal oxygen extraction offset decreases in delivery and uptake was preserved; and 2) nonpolycythemic hyperviscosity did not have a major influence on cardiovascular or metabolic responses to hypoxia, except for modest effects on intestinal resistance and perfusion to certain gastrointestinal regions. We conclude that, under normocythemic conditions, a moderate increase in viscosity does not have a major impact on hemodynamic or metabolic adjustments to hypoxia in newborn pigs.  相似文献   

4.
Haem is used as a versatile receptor for redox active molecules; most notably NO (nitric oxide) and oxygen. Three haem-containing proteins, myoglobin, haemoglobin and cytochrome c oxidase, are now known to bind NO, and in all these cases competition with oxygen plays an important role in the biological outcome. NO also binds to the haem group of sGC (soluble guanylate cyclase) and initiates signal transduction through the formation of cGMP in a process that is oxygen-independent. From biochemical studies, it has been shown that sGC is substantially more sensitive to NO than is cytochrome c oxidase, but a direct comparison in a cellular setting under various oxygen levels has not been reported previously. In this issue of the Biochemical Journal, Cadenas and co-workers reveal how oxygen can act as the master regulator of the relative sensitivity of the cytochrome c oxidase and sGC signalling pathways to NO. These findings have important implications for our understanding of the interplay between NO and oxygen in both physiology and the pathology of diseases associated with hypoxia.  相似文献   

5.
The purpose of this study was to examine the interactions of adaptations in O2 transport and utilization under conditions of altered arterial O2 content (CaO2), during rest to exercise transitions. Simultaneous measures of alveolar (VO2alv) and leg (VO2mus) oxygen uptake and leg blood flow (LBF) responses were obtained in normoxic (FiO2 (inspired fraction of O2) = 0.21), hypoxic (FiO2 = 0.14), and hyperoxic (FiO2 = 0.70) gas breathing conditions. Six healthy subjects performed transitions in leg kicking exercise from rest to 48 +/- 3 W. LBF was measured continuously with pulsed and echo Doppler ultrasound methods, VO2alv was measured breath-by-breath at the mouth and VO2mus was determined from LBF and radial artery and femoral vein blood samples. Even though hypoxia reduced CaO2 to 175.9 +/- 5.0 from 193.2 +/- 5.0 mL/L in normoxia, and hyperoxia increased CaO2 to 205.5 +/- 4.1 mL/L, there were no differences in the absolute values of VO2alv or VO2mus across gas conditions at any of the rest or exercise time points. A reduction in leg O2 delivery in hypoxia at the onset of exercise was compensated by a nonsignificant increase in O2 extraction and later by small increases in LBF to maintain VO2mus. The dynamic response of VO2alv was slower in the hypoxic condition; however, hyperoxia did not affect the responses of oxygen delivery or uptake at the onset of moderate intensity leg kicking exercise. The finding of similar VO2mus responses at the onset of exercise for all gas conditions demonstrated that physiological adaptations in LBF and O2 extraction were possible, to counter significant alterations in CaO2. These results show the importance of the interplay between O2 supply and O2 utilization mechanisms in meeting the challenge provided by small alterations in O2 content at the onset of this submaximal exercise task.  相似文献   

6.
During chronic hypoxia at sea level (FiO2 : 0,08) the liver concentrations of cytochrome P 450 and b5 decreased. Phenytoin administration induces an increase in cytochrome P 450 and b5 liver content. The hydroxylation of phenytoin that was decreased at low level of cytochrome P 450 and oxygen, reached again a normal level after induction of cytochrome P 450 in spite of the persistency of a low level of available oxygen. Liver cytochrome P 450 concentration is the main limiting factor of phenytoin hydroxylation.  相似文献   

7.
The changes in cerebral metabolism in mice in severe hypoxia were investigated by analyses of changes in the levels of energy metabolites and near-infrared spectrophotometric assessment of the states of hemoglobin and cytochrome oxidase. Under 4.4% O2, the contribution of anaerobic ATP production was at most about 20% of the demand. However, the cerebral ATP level was kept at the control level until about 1 min before death. Pentobarbital anesthesia, which reduced the cerebral rate of metabolism, prolonged the survival time, although anaerobic ATP production still did not support ATP demand. Under these conditions, deoxygenation of hemoglobin and reduction of cytochrome oxidase proceeded rapidly within 1 min. Hemoglobin reached the maximum state of deoxygenation in the middle phase of hypoxia, with no further change until death. However, cytochrome oxidase was reduced slowly with one phase of partial reoxidation due to increase of cerebral blood volume, and reached the completely reduced state at death. From these results it was concluded that the aerobic ATP synthesis, which supplied more than 80% of the cerebral demand, decreased gradually because of limitation of oxygen supply, and that the failure of oxidative phosphorylation to meet demand triggered the decrease in the cellular ATP level that led to death.  相似文献   

8.
Summary The blood oxygen binding properties of rainbow trout responded to environmental hypoxia (the oxygen saturation of water 30% at 11°C) in three ways. The quickest response was a moderate acidosis, leading to slightly lowered blood oxygen loading due to the Bohr effect. The second response, an increase of blood oxygen carrying capacity, was completed with 6 h from the onset of hypoxia. The speed of the response suggests that the formation of new haemoglobin played no practical role, the increase being caused either by a decrease of plasma volume or the liberation of erythrocytes from a storage organ. The slowest response, a 25% increase of the blood oxygen affinity within a week of hypoxia, was probably caused by the concurrent decrease of the erythrocyte ATP concentration from 4.45 to 2.51 mol/ml erythrocytes.  相似文献   

9.
A new haemoglobin with increased oxygen affinity, beta82 (EF6) lysine leads to threonine (Hb Rahere), was found during the investigation of a patient who was found to have a raised haemoglobin concentration after a routine blood count. The substitution affects one of the 2, 3-diphosphoglycerate binding sites, resulting in an increased affinity for oxygen, but both the haem-haem interaction and the alkaline Bohr effect are normal in the haemolysate. This variant had the same mobility as haemoglobin A on electrophoresis at alkaline pH but was detected by measuring the whole blood oxygen affinity; it could be separated from haemoglobin A, however, by electrophoresis in agar at acid pH. The raised haemoglobin concentration was mainly due to a reduction in plasma volume (a relative polycythaemia) and was associated with a persistently raised white blood count. This case emphasises the need to measure the oxygen affinity of haemoglobin in all patients with absolute or relative polycythaemia when some obvious cause is not evident.  相似文献   

10.
Hemoglobin-based oxygen carriers (HBOC) have been primarily studied for blood loss treatment. More recently infusions of HBOC in euvolemic subjects have been proposed for a wide variety of potential therapies in which increased tissue oxygenation would be beneficial. However, compared with the exchange transfusion models to study blood loss, less is known about HBOC oxygen delivery and vasoacitvity when it is infused in euvolemic subjects. We hypothesized that HBOC [polymerized bovine hemoglobin (PBvHb)] infusion creating hypervolemia would increase oxygen delivery to tissues during acute global hypoxia. Vascular oxygen content and hemodynamics were determined after euvolemic rats were infused with 3 ml of either lactated Ringer or PBvHb solution (13 g/dl, 1.3 g/kg) during acute hypoxia (FIO2 = 10%, 4 h) or normoxia (FIO2 = 21%) exposure. Our data demonstrated that compared with Ringer-infused animals, in hypoxia and normoxia, PBvHb treatment improved oxygen content but raised mean arterial pressure, lowered stroke volume, heart rate, and cardiac index, which resulted in a net reduction in blood flow and oxygen delivery to the tissues. The PBvHb vasoactive effect was similar in magnitude and direction as to the Ringer-infused animals treated with a nitric oxide synthase inhibitor nitro-l-arginine, suggesting the PBvHb effect is mediated via nitric oxide scavenging. We conclude that infusion of PBvHb is not likely to be useful in treating global hypoxia under these conditions.  相似文献   

11.
The purpose of this study was to investigate metabolic and hemodynamic responses in two fetal tissues, hindlimb muscle and brain, to an episode of acute moderate asphyxia. Near-infrared spectroscopy was used to measure changes in total hemoglobin concentration ([tHb]) and the redox state of cytochrome oxidase (COX) simultaneously in the brain and hindlimb of near-term unanesthetized fetal sheep in utero. Oxygen delivery (DO(2)) to, and consumption (VO(2)) by, each tissue was derived from the arteriovenous difference in oxygen content and blood flow, measured by implanted flow probes. One hour of moderate asphyxia (n = 11), caused by occlusion of the maternal common internal iliac artery, led to a significant fall in DO(2) to both tissues and to a significant drop in VO(2) by the head. This was associated with an initial fall in redox state COX in the leg but an increase in the brain. [tHb], and therefore blood volume, fell in the leg and increased in the brain. These data suggest the presence of a fetal metabolic response to hypoxia, which, in the brain, occurs rapidly and could be neuroprotective.  相似文献   

12.
The preterm fetus is capable of surviving prolonged periods of severe hypoxia without neural injury for much longer than at term. To evaluate the hypothesis that regulated suppression of brain metabolism contributes to this remarkable tolerance, we assessed changes in the redox state of cytochrome oxidase (CytOx) relative to cerebral heat production, and cytotoxic edema measured using cerebral impedance, during 25 min of complete umbilical cord occlusion or sham occlusion in fetal sheep at 0.7 gestation. Occlusion was followed by rapid, profound reduction in relative cerebral oxygenation and EEG intensity and an immediate increase in oxidized CytOx, indicating a reduction in electron flow down the mitochondrial electron transfer chain. Confirming rapid suppression of cerebral metabolism there was a loss of the temperature difference between parietal cortex and body at a time when carotid blood flow was maintained at control values. As occlusion continued, severe hypotension/hypoperfusion developed, with a further increase in CytOx levels to a plateau between 8 and 13 min and a progressive rise in cerebral impedance. In conclusion, these data strongly suggest active regulation of cerebral metabolism during the initial response to severe hypoxia, which may help to protect the immature brain from injury.  相似文献   

13.
During a eight days period of chronic hypoxia (FiO2 : 0,06) the cytochrome P 450 content of mice'liver decreases the 1st day, increases the 2nd and the 3rd day and decreases again and remains at a low levels. During a 13 days period of chronic hypoxia (FiO2 = 0,08) the P 450 level remains inchanged during 5 days. It decreases after until the 13teen day. G6Pase, an endoplasmic reticulum enzyme marker is quite inchanged in these conditions.  相似文献   

14.
Severe hemodilutional anemia may reduce cerebral oxygen delivery, resulting in cerebral tissue hypoxia. Increased nitric oxide synthase (NOS) expression has been identified following cerebral hypoxia and may contribute to the compensatory increase in cerebral blood flow (CBF) observed after hypoxia and anemia. However, changes in cerebral NOS gene expression have not been reported after acute anemia. This study tests the hypothesis that acute hemodilutional anemia causes cerebral tissue hypoxia, triggering changes in cerebral NOS gene expression. Anesthetized rats underwent hemodilution when 30 ml/kg of blood were exchanged with pentastarch, resulting in a final hemoglobin concentration of 51.0 +/- 1.2 g/l (n = 7 rats). Caudate tissue oxygen tension (Pbr(O(2))) decreased transiently from 17.3 +/- 4.1 to 14.4 +/- 4.1 Torr (P < 0.05), before returning to baseline after approximately 20 min. An increase in CBF may have contributed to restoring Pbr(O(2)) by improving cerebral tissue oxygen delivery. An increase in neuronal NOS (nNOS) mRNA was detected by RT-PCR in the cerebral cortex of anemic rats after 3 h (P < 0.05, n = 5). A similar response was observed after exposure to hypoxia. By contrast, no increases in mRNA for endothelial NOS or interleukin-1beta were observed after anemia or hypoxia. Hemodilutional anemia caused an acute reduction in Pbr(O(2)) and an increase in cerebral cortical nNOS mRNA, supporting a role for nNOS in the physiological response to acute anemia.  相似文献   

15.
A new method has been developed for the determination of maximal reduction of NAD in the rat cerebral cortex. NADH fluorescence (450 nm) induced by 366-nm light and UV reflectance were measured by a time-sharing light pipe fluorometer. The redox state of the cortical surface was altered by perfusion of oxygen or carbon monoxide through a Teflon chamber adjacent to the dura. This study examines changes caused by local perfusion with the two gases in normoxia, hypoxia, and anoxia. Alternation of topical carbon monoxide and oxygen becomes effective in altering the intracellular redox state at 15% inspired oxygen and caused 20% changes at zero inspired oxygen. Conversely, topical application of oxygen to the systemically anoxic tissue causes oxidation of reduced NAPH in the cells within the field of fluorometric observation equivalent to that caused by breathing approximately 8% oxygen systemically.  相似文献   

16.
Calf blood flow at rest and during postocclusive reactive hyperaemia was measured using an electrocardiogram-triggered plethysmograph in 14 patients with polycythaemia (nine with primary disease and five with polycythaemia secondary to cyanotic heart disease) before and after a course of venesection. The mean packed cell volume was reduced from 0.57 to 0.47, and whole-blood viscosity fell by 50% at low shear rates. Venesection did not affect rest flow, but peak flow was increased by 18%. The increase in peak flow failed to compensate for the reduced haemoglobin content of the blood, calculated haemoglobin delivery being reduced by 23% at rest and 10% during reactive hyperaemia. These results indicate that while venesection improves blood viscosity, this does not necessarily lead to improved delivery of oxygen to the tissues.  相似文献   

17.
Hoshi, Yoko, Osamu Hazeki, Yasuyuki Kakihana, and MamoruTamura. Redox behavior of cytochrome oxidase in the rat brain measured by near-infrared spectroscopy. J. Appl.Physiol. 83(6): 1842-1848, 1997.Usingnear-infrared spectroscopy, we developed a new approach for measuringthe redox state of cytochrome oxidase in the brain under normalblood-circulation conditions. Our algorithm does not require theabsorption coefficient of cytochrome oxidase, which differs from studyto study. We employed this method for evaluation of effects of changesin oxygen delivery on cerebral oxygenation in rats. When fractionalinspired oxygen was decreased in a stepwise manner from100 to <10%, at which point the concentration of oxygenatedhemoglobin([HbO2])decreased by ~60%, cytochrome oxidase started to be reduced.Increases in arterial PO2 underhyperoxic conditions caused an increase in[HbO2], whereas further oxidation of cytochrome oxidase was not observed. The dissociation of the responses of hemogloblin and cytochrome oxidase wasalso clearly observed after the injection of epinephrine under severelyhypoxic conditions; that is, cytochrome oxidase was reoxidized withincreasing blood pressure, whereas hemoglobin oxygenation was notchanged. These data indicated that oxygen-dependent redox changes incytochrome oxidase occur only when oxygen delivery is extremelyimpaired. This is consistent with the in vitro data of our previousstudy.

  相似文献   

18.
Near infrared (IR) spectroscopy can give continuous, direct information about cerebral oxygenation in vivo by providing signals from oxygenated and deoxygenated haemoglobin and cytochrome aa3. Due to a lack of precise spectral information and uncertainties about optical path length it has previously been impossible to quantify the data. We have therefore obtained the cytochrome aa3 spectrum in vivo from the brains of rats after replacing the blood with a fluorocarbon substitute. Near infrared haemoglobin spectra were also obtained, at various oxygenation levels, from cuvette studies of lysed human red blood cells. Estimates of optical path length have been obtained. The data were used to construct an algorithm for calculating the changes in oxygenated and deoxygenated haemoglobin and oxygenated cytochrome aa3 in tissue from changes in near IR absorption.  相似文献   

19.
Cerebral blood flow increases with acute exposure to high altitude, but the effect of hypoxia on the cerebral circulation at rest and during exercise appears influenced by the duration of high-altitude exposure. To determine whether internal carotid artery flow velocity increased with exercise in long-term residents of high altitude and whether resting values and the response to exercise differed in lifelong vs. acclimatized newcomer male residents of high altitude, we studied 15 native Tibetan and 11 Han ("Chinese") 6 +/- 2-yr residents of Lhasa (3,658 m), Tibet Autonomous Region, China. Noninvasive Doppler ultrasound was used to measure internal carotid artery diameter, mean flow velocity, and, in combination, hemoglobin and arterial O2 saturation to assess cerebral O2 delivery. Tibetan and Han groups were similar in body size and resting internal carotid artery diameter, blood pressure, hemoglobin concentration, internal carotid artery mean flow velocity, and calculated cerebral O2 delivery. Submaximal exercise increased internal carotid artery mean flow velocity and cerebral O2 delivery in the Tibetan and Han subjects. At peak exercise, the Tibetans sustained the increase in flow velocity and cerebral O2 delivery, whereas the Hans did not. Across all exercise levels up to and including peak effort, the Tibetans demonstrated a greater increase in internal carotid artery flow velocity and cerebral O2 delivery relative to resting values than did the Hans. The greater cerebral O2 delivery was accompanied by increased peak exercise capacity in the Tibetan compared with the Han group. Our findings suggest that the cerebral blood flow response to exercise is maintained in Tibetan lifelong residents of high altitude.  相似文献   

20.
Cerebral oxidative metabolism during sustained hypoxaemia in fetal sheep   总被引:1,自引:0,他引:1  
Cerebral oxidative metabolism was determined in 9 unanaesthetized fetal sheep near term, during a normoxic control period and during sustained hypoxaemia induced by lowering maternal inspired O2 concentration to 11-8% with 3% CO2 added. Preductal arterial and sagittal vein blood samples were analyzed for oxygen content, blood gas tensions and pH. Cerebral blood flow was measured with a radioactively-labelled microsphere technique. Induced fetal hypoxaemia resulted in a metabolic acidaemia which was progressive over several h. Cerebral oxygen consumption was initially marginally decreased in response to induced hypoxaemia with cerebral blood flow increased thus maintaining O2 delivery coupled to cerebral oxygen consumption. With a worsening metabolic acidemia, pHa below 7.15, cerebral blood flow fell as mean arterial pressure fell, but cerebral oxygen consumption was little changed as fractional O2 extraction now increased. With sustained hypoxaemia and profound metabolic acidaemia, pHa below 7.00, fractional O2 extraction also fell resulting in a terminal fall in cerebral oxygen consumption to less than 50% of control values. Although the initial marginal decrease in cerebral oxygen consumption in response to induced hypoxia may represent a protective mechanism whereby the fetal brain decreases nonessential functions thus lowering oxidative needs, the terminal fall in cerebral oxygen consumption suggests pathological alterations within the brain at this time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号