首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phylogenetic diversity of the bacterial communities supported by a seven-stage, full-scale biological wastewater treatment plant was studied. These reactors were operated at both mesophilic (28 to 32°C) and thermophilic (50 to 58°C) temperatures. Community fingerprint analysis by denaturing gradient gel electrophoresis (DGGE) of the PCR-amplified V3 region of the 16S rRNA gene from the domain Bacteria revealed that these seven reactors supported three distinct microbial communities. A band-counting analysis of the PCR-DGGE results suggested that elevated reactor temperatures corresponded with reduced species richness. Cloning of nearly complete 16S rRNA genes also suggested a reduced species richness in the thermophilic reactors by comparing the number of clones with different nucleotide inserts versus the total number of clones screened. While these results imply that elevated temperature can reduce species richness, other factors also could have impacted the number of populations that were detected. Nearly complete 16S rDNA sequence analysis showed that the thermophilic reactors were dominated by members from the β subdivision of the division Proteobacteria (β-proteobacteria) in addition to anaerobic phylotypes from the low-G+C gram-positive and Synergistes divisions. The mesophilic reactors, however, included at least six bacterial divisions, including Cytophaga-Flavobacterium-Bacteroides, Synergistes, Planctomycetes, low-G+C gram-positives, Holophaga-Acidobacterium, and Proteobacteria (α-proteobacteria, β-proteobacteria, γ-proteobacteria and δ-proteobacteria subdivisions). The two PCR-based techniques detected the presence of similar bacterial populations but failed to coincide on the relative distribution of these phylotypes. This suggested that at least one of these methods is insufficiently quantitative to determine total community biodiversity—a function of both the total number of species present (richness) and their relative distribution (evenness).  相似文献   

2.
The microbial community and its diversity in production water from a high-temperature, water-flooded petroleum reservoir of an offshore oilfield in China were characterized by 16S rRNA gene sequence analysis. The bacterial and archaeal 16S rRNA gene clone libraries were constructed from the community DNA and, using sequence analysis, 388 bacterial and 220 archaeal randomly selected clones were clustered with 60 and 28 phylotypes, respectively. The results showed that the 16S rRNA genes of bacterial clones belonged to the divisions Firmicutes, Thermotogae, Nitrospirae and Proteobacteria, whereas the archaeal library was dominated by methanogen-like rRNA genes (Methanothermobacter, Methanobacter, Methanobrevibacter and Methanococcus), with a lower percentage of clones belonging to Thermoprotei. Thermophilic microorganisms were found in the production water, as well as mesophilic microorganisms such as Pseudomonas and Acinetobacter-like clones. The thermophilic microorganisms may be common inhabitants of geothermally heated specialized subsurface environments, which have been isolated previously from a number of high-temperature petroleum reservoirs worldwide. The mesophilic microorganisms were probably introduced into the reservoir as it was being exploited. The results of this work provide further insight into the composition of microbial communities of high-temperature petroleum reservoirs at offshore oilfields.  相似文献   

3.
Water from a continental high-temperature, long-term water-flooded petroleum reservoir in Huabei Oilfield in China was analysed for its bacterial community and diversity. The bacteria were characterized by their 16S rRNA genes. A 16S rRNA gene clone library was constructed from the community DNA, and using restriction fragment length polymorphism analysis, 337 randomly selected clones were clustered with 74 operational taxonomic units. Sequencing and phylogenetic analyses showed that the screened clones were affiliated with Gammaproteobacteria (85.7%), Thermotogales (6.8%), Epsilonproteobacteria (2.4%), low-G+C Gram-positive (2.1%), high-G+C Gram-positive, Betaproteobacteria and Nitrospira (each <1.0%). Thermopilic bacteria were found in the high-temperature water from the flooded petroleum reservoir, as well as mesophilic bacteria such as Pseudomonas-like clones. The mesophilic bacteria were probably introduced into the reservoir as it was being exploited. This work provides significant information on the structure of bacterial communities in high-temperature, long-term water-flooded petroleum reservoirs.  相似文献   

4.
We previously reported that the thermophilic filamentous anaerobe Anaerolinea thermophila, which is the first cultured representative of subphylum I of the bacterial phylum Chloroflexi, not only was one of the predominant constituents of thermophilic sludge granules but also was a causative agent of filamentous sludge bulking in a thermophilic (55 degrees C) upflow anaerobic sludge blanket (UASB) reactor in which high-strength organic wastewater was treated (Y. Sekiguchi, H. Takahashi, Y. Kamagata, A. Ohashi, and H. Harada, Appl. Environ. Microbiol. 67:5740-5749, 2001). To further elucidate the ecology and function of Anaerolinea-type filamentous microbes in UASB sludge granules, we surveyed the diversity, distribution, and physiological properties of Chloroflexi subphylum I microbes residing in UASB granules. Five different types of mesophilic and thermophilic UASB sludge were used to analyze the Chloroflexi subphylum I populations. 16S rRNA gene cloning-based analyses using a 16S rRNA gene-targeted Chloroflexi-specific PCR primer set revealed that all clonal sequences were affiliated with the Chloroflexi subphylum I group and that a number of different phylotypes were present in each clone library, suggesting the ubiquity and vast genetic diversity of these populations in UASB sludge granules. Subsequent fluorescence in situ hybridization (FISH) of the three different types of mesophilic sludge granules using a Chloroflexi-specific probe suggested that all probe-reactive cells had a filamentous morphology and were widely distributed within the sludge granules. The FISH observations also indicated that the Chloroflexi subphylum I bacteria were not always the predominant populations within mesophilic sludge granules, in contrast to thermophilic sludge granules. We isolated two mesophilic strains and one thermophilic strain belonging to the Chloroflexi subphylum I group. The physiological properties of these isolates suggested that these populations may contribute to the degradation of carbohydrates and other cellular components, such as amino acids, in the bioreactors.  相似文献   

5.
A culture-independent molecular phylogenetic approach was used to study prokaryotic diversity in an anaerobic sludge digester. Two 16S rRNA gene libraries were constructed using total genomic DNA, and amplified by polymerase chain reaction (PCR) using primers specific for archaeal or bacterial domains. Phylogenetic analysis of 246 and 579 almost full-length 16S rRNA genes for Archaea and Bacteria, respectively, was performed using the ARB software package. Phylogenetic groups affiliated with the Archaea belong to Euryarchaeota and Crenarchaeota. Interestingly, we detected a novel monophyletic group of 164 clones representing 66.6% of the archaeal library. Culture enrichment and probe hybridization show that this group grows better under formate or H2-CO2. Within the bacterial library 95.6% of the operational taxonomic units (OTUs) represent novel putative phylotypes never described before, and affiliated with eight divisions. The Bacteroidetes phylum is the most abundant and diversified phylogenetic group representing 38.8% of the OTUs, followed by the gram-positives (27.7%) and the Proteobacteria (21.3%). Sequences affiliated with phylogenetic divisions represented by few cultivated representatives such as the Chloroflexi, Synergistes, Thermotogales or candidate divisions such as OP9 and OP8 are represented by <5% of the total OTUs. A comprehensive set of 15 16S and 23S rRNA-targeted oligonucleotide hybridization probes was used to quantify these major groups by dot blot hybridization within 12 digester samples. In contrast to the clone library, Firmicutes and Actinobacteria together accounted for 21.8 +/- 14.9% representing the most abundant phyla. They were surprisingly followed by the Chloroflexi representing 20.2 +/- 4.6% of the total 16S rRNA. The Proteobacteria and the Bacteroidetes group accounted for 14.4 +/- 4.9% and 14.5 +/- 4.3%, respectively, WWE1, a novel lineage, accounted for 11.9 +/- 3.1% while Planctomycetes and Synergistes represented <2% each. Using the novel set of probes we extended the coverage of bacterial populations from 52% to 85.3% of the total rRNA within the digester samples.  相似文献   

6.
The microbial communities established in mesophilic and thermophilic expanded granular sludge bed reactors operated with sulfate as the electron acceptor were analyzed using 16S rRNA targeted molecular methods, including denaturing gradient gel electrophoresis, cloning, and phylogenetic analysis. Bacterial and archaeal communities were examined over 450 days of operation treating ethanol (thermophilic reactor) or ethanol and later a simulated semiconductor manufacturing wastewater containing citrate, isopropanol, and polyethylene glycol 300 (mesophilic reactor), with and without the addition of copper(II). Analysis, of PCR-amplified 16S rRNA gene fragments using denaturing gradient gel electrophoresis revealed a defined shift in microbial diversity in both reactors following a change in substrate composition (mesophilic reactor) and in temperature of operation from 30°C to 55°C (thermophilic reactor). The addition of copper(II) to the influent of both reactors did not noticeably affect the composition of the bacterial or archaeal communities, which is in agreement with the very low soluble copper concentrations (3–310 μg l−1) present in the reactor contents as a consequence of extensive precipitation of copper with biogenic sulfides. Furthermore, clone library analysis confirmed the phylogenetic diversity of sulfate-reducing consortia in mesophilic and thermophilic sulfidogenic reactors operated with simple substrates.  相似文献   

7.
The phylogenetic diversity of the intestinal bacterial community in pigs was studied by comparative 16S ribosomal DNA (rDNA) sequence analysis. Samples were collected from a total of 24 pigs representing a variety of diets, ages, and herd health status. A library comprising 4,270 cloned 16S rDNA sequences obtained directly by PCR from 52 samples of either the ileum, the cecum, or the colon was constructed. In total, 375 phylotypes were identified using a 97% similarity criterion. Three hundred nine of the phylotypes (83%) had a <97% sequence similarity to any sequences in the database and may represent yet-uncharacterized bacterial genera or species. The phylotypes were affiliated with 13 major phylogenetic lineages. Three hundred four phylotypes (81%) belonged to the low-G+C gram-positive division, and 42 phylotypes (11.2%) were affiliated with the Bacteroides and Prevotella group. Four clusters of phylotypes branching off deeply within the low-G+C gram-positive bacteria and one in the Mycoplasma without any cultured representatives were found. The coverage of all the samples was 97.2%. The relative abundance of the clones approximated a lognormal distribution; however, the phylotypes detected and their abundance varied between two libraries from the same sample. The results document that the intestinal microbial community is very complex and that the majority of the bacterial species colonizing the gastrointestinal tract in pigs have not been characterized.  相似文献   

8.
The methanogenic community in hydrothermally active sediments of Guaymas Basin (Gulf of California, Mexico) was analyzed by PCR amplification, cloning, and sequencing of methyl coenzyme M reductase (mcrA) and 16S rRNA genes. Members of the Methanomicrobiales and Methanosarcinales dominated the mcrA and 16S rRNA clone libraries from the upper 15 cm of the sediments. Within the H2/CO2- and formate-utilizing family Methanomicrobiales, two mcrA and 16S rRNA lineages were closely affiliated with cultured species of the genera Methanoculleus and Methanocorpusculum. The most frequently recovered mcrA PCR amplicons within the Methanomicrobiales did not branch with any cultured genera. Within the nutritionally versatile family Methanosarcinales, one 16S rRNA amplicon and most of the mcrA PCR amplicons were affiliated with the obligately acetate utilizing species Methanosaeta concilii. The mcrA clone libraries also included phylotypes related to the methyl-disproportionating genus Methanococcoides. However, two mcrA and two 16S rRNA lineages within the Methanosarcinales were unrelated to any cultured genus. Overall, the clone libraries indicate a diversified methanogen community that uses H2/CO2, formate, acetate, and methylated substrates. Phylogenetic affiliations of mcrA and 16S rRNA clones with thermophilic and nonthermophilic cultured isolates indicate a mixed mesophilic and thermophilic methanogen community in the surficial Guaymas sediments.  相似文献   

9.
In spite of the techniques based on the amplification of 16S rRNA genes (16S rDNA) to compare bacterial communities that are now widely in use in microbial ecology, little is known about the composition of the soybean continuous cropping (CC) and rotational cropping (RC) soil microbial community. To address this, we compared the levels of bacterial community diversity in RC and 5-year CC rhizosphere soil samples. We selected 407 clones in RC and 490 clones in CC for restriction fragment length polymorphism analysis. A total of 123 phylotypes were identified among the 16S rDNA clones, while 78 unique and 21 common phylotypes were identified among the CC soil isolates. Analysis of sequences from a subset of the phylotypes showed that at least 11 bacterial divisions were represented in the clone libraries. The phylotype richness, frequency distribution (evenness), and composition of the two clone libraries were investigated using a variety of diversity indices. Although the analysis of diversity indices and LIBSHUFF comparisons revealed that the compared libraries were not significantly different ( P =0.05) between the RC vs. CC soils, some differences could be observed in terms of specific phyla and groups. We concluded that the group variance was not determined immediately by the cropping system's induction, but was a long-term and slow process.  相似文献   

10.
The flagellate Caduceia versatilis in the gut of the termite Cryptotermes cavifrons reportedly propels itself not by its own flagella but solely by the flagella of ectosymbiotic bacteria. Previous microscopic observations have revealed that the motility symbionts are flagellated rods partially embedded in the host cell surface and that, together with a fusiform type of ectosymbiotic bacteria without flagella, they cover almost the entire surface. To identify these ectosymbionts, we conducted 16S rRNA clone analyses of bacteria physically associated with the Caduceia cells. Two phylotypes were found to predominate in the clone library and were phylogenetically affiliated with the "Synergistes" phylum and the order Bacteroidales in the Bacteroidetes phylum. Probes specifically targeting 16S rRNAs of the respective phylotypes were designed, and fluorescence in situ hybridization (FISH) was performed. As a result, the "Synergistes" phylotype was identified as the motility symbiont; the Bacteroidales phylotype was the fusiform ectobiont. The "Synergistes" phylotype was a member of a cluster comprising exclusively uncultured clones from the guts of various termite species. Interestingly, four other phylotypes in this cluster, including the one sharing 95% sequence identity with the motility symbiont, were identified as nonectosymbiotic, or free-living, gut bacteria by FISH. We thus suggest that the motility ectosymbiont has evolved from a free-living gut bacterium within this termite-specific cluster. Based on these molecular and previous morphological data, we here propose a novel genus and species, "Candidatus Tammella caduceiae," for this unique motility ectosymbiont of Caducaia versatilis.  相似文献   

11.
Fecal microbial diversity in a strictly vegetarian woman was determined by the 16S rDNA library method, terminal restriction fragment length polymorphism (T-RFLP) analysis and a culture-based method. The 16S rDNA library was generated from extracted fecal DNA, using bacteria-specific primers. Randomly selected clones were partially sequenced. T-RFLP analysis was performed using amplified 16S rDNA. The lengths of T-RF were analyzed after digestion by HhaI and MspI. The cultivated bacterial isolates were used for partial sequencing of 16S rDNA. Among 183 clones obtained, approximately 29% of the clones belonged to 13 known species. About 71% of the remaining clones were novel "phylotypes" (at least 98% similarity of clone sequence). A total of 55 species or phylotypes were identified among the 16S rDNA library, while the cultivated isolates included 22 species or phylotypes. In addition, many new phylotypes were detected from the 16S rDNA library. The 16S rDNA library and isolates commonly included the Bacteroides group, Bifidobacterium group, and Clostridium rRNA clusters IV, XIVa, XVI and XVIII. T-RFLP analysis revealed the major composition of the vegetarian gut microbiota were Clostridium rRNA subcluster XIVa and Clostridium rRNA cluster XVIII. The dominant feature of this strictly vegetarian gut microbiota was the detection of many Clostridium rRNA subcluster XIVa and C. ramosum (Clostridium rRNA cluster XVIII).  相似文献   

12.
The bacterial and archaeal community structure was examined in two methanogenic anaerobic digestion processes degrading organic household waste at mesophilic (37 degrees C) and thermophilic (55 degrees C) temperatures. Analysis of bacterial clone libraries revealed a predominance of Bacteroidetes (34% of total clones) and Chloroflexi (27%) at the mesophilic temperature. In contrast, in the thermophilic clone library, the major group of clones were affiliated with Thermotogae (61%). Within the domain Archaea, the phyla Euryarchaeota and Crenarchaeota were both represented, the latter only at the mesophilic temperature. The dominating archaeons grouped with Methanospirillum and Methanosarcina species at the mesophilic and thermophilic temperature, respectively. Generally, there was a higher frequency of different sequences at the lower temperature, suggesting a higher diversity compared to the community present at the thermophilic temperature. Furthermore, it was not only the species richness that was affected by temperature, but also the phylogenetic distribution of the microbial populations.  相似文献   

13.
We previously reported that the thermophilic filamentous anaerobe Anaerolinea thermophila, which is the first cultured representative of subphylum I of the bacterial phylum Chloroflexi, not only was one of the predominant constituents of thermophilic sludge granules but also was a causative agent of filamentous sludge bulking in a thermophilic (55°C) upflow anaerobic sludge blanket (UASB) reactor in which high-strength organic wastewater was treated (Y. Sekiguchi, H. Takahashi, Y. Kamagata, A. Ohashi, and H. Harada, Appl. Environ. Microbiol. 67:5740-5749, 2001). To further elucidate the ecology and function of Anaerolinea-type filamentous microbes in UASB sludge granules, we surveyed the diversity, distribution, and physiological properties of Chloroflexi subphylum I microbes residing in UASB granules. Five different types of mesophilic and thermophilic UASB sludge were used to analyze the Chloroflexi subphylum I populations. 16S rRNA gene cloning-based analyses using a 16S rRNA gene-targeted Chloroflexi-specific PCR primer set revealed that all clonal sequences were affiliated with the Chloroflexi subphylum I group and that a number of different phylotypes were present in each clone library, suggesting the ubiquity and vast genetic diversity of these populations in UASB sludge granules. Subsequent fluorescence in situ hybridization (FISH) of the three different types of mesophilic sludge granules using a Chloroflexi-specific probe suggested that all probe-reactive cells had a filamentous morphology and were widely distributed within the sludge granules. The FISH observations also indicated that the Chloroflexi subphylum I bacteria were not always the predominant populations within mesophilic sludge granules, in contrast to thermophilic sludge granules. We isolated two mesophilic strains and one thermophilic strain belonging to the Chloroflexi subphylum I group. The physiological properties of these isolates suggested that these populations may contribute to the degradation of carbohydrates and other cellular components, such as amino acids, in the bioreactors.  相似文献   

14.
District heating systems (DHS) are extreme aqueous environments characterized by high temperatures, high pH (9.5-10.0), and low nutrient availability. Culture-independent and culture-dependent techniques showed that DHS may nevertheless harbour geno- and phenotypically diverse bacterial biofilm communities. Approximately 50% of the cells in biofilms growing on mild steel coupons in rotortorque reactors connected to the return line (40 degrees C) of a Danish DHS were detectable by FISH analysis and thus were probably metabolically active. A bacterial 16S rRNA gene clone library generated from the biofilms was dominated by proteobacterial phylotypes (closely related to known aerobic species) and by phylotypes affiliated to the anaerobic class Clostridia. Anoxic enrichment cultures derived from biofilms primarily contained 16S rRNA gene and dsrAB (encoding major subunits of dissimilatory sulfite reductase) phylotypes affiliated to the latter class. Alkalitolerant and neutrophilic anaerobic bacteria were isolated from the DHS, including novel Gram-positive and deltaproteobacterial sulfate-reducers and sulfite-reducers constituting novel Gram-positive lineages. In total, 39 distinct 16S rRNA gene phylotypes representing ten classes were identified. The detection of several alkalitolerant, sulfide-producing, and, thus, potentially biocorrosive species underlines the need to maintain a high water quality in the DHS in order to prevent the proliferation of these species.  相似文献   

15.
Bacterial communities associated with the brown alga Laminaria saccharina from the Baltic Sea and from the North Sea were investigated using denaturing gradient gel electrophoresis and 16S rRNA gene clone libraries. The rhizoid, cauloid, meristem and phyloid revealed different 16S rRNA gene denaturing gradient gel electrophoresis banding patterns indicating a specific association of bacterial communities with different parts of the alga. Associations with cauloid and meristem were more specific, while less specific associations were obtained from the old phyloid. In addition, seasonal and geographical differences in the associated communities were observed. Results from 16S rRNA gene libraries supported these findings. Bacterial phylotypes associated with the alga were affiliated with the Alphaproteobacteria (nine phylotypes), Gammaproteobacteria (nine phylotypes) and the Bacteroidetes group (four phylotypes). A number of bacteria associated with other algae and other marine macroorganisms were among the closest relatives of phylotypes associated with L. saccharina.  相似文献   

16.
16S rRNA clone library analysis was used to examine the biodiversity and community structure within the sediments of three hypersaline Antarctic lakes. Compared to sediment of low to moderate salinity Antarctic lakes the species richness of the hypersaline lake sediments was 2-20 times lower. The community of Deep Lake (32% salinity, average sediment temperature -15 degrees C) was made up almost entirely of halophilic Archaea. The sediment communities of two meromictic hypersaline lakes, Organic Lake (20% salinity, -7 degrees C) and Ekho Lake (15% salinity, 15 degrees C) were more complex, containing phylotypes clustering within the Proteobacteria and Cytophagales divisions and with algal chloroplasts. Many phylotypes of these lakes were related to taxa more adapted to marine-like salinity and perhaps derive from bacteria exported into the sediment from the lower salinity surface waters. The Ekho Lake clone library contained several major phylotypes related to the Haloanaerobiales, the growth of which appears to be promoted by the comparatively high in situ temperature of this lake.  相似文献   

17.
The bacterial core communities of bulk water and corresponding biofilms of a more than 20-year-old drinking water network were compared using 16S rRNA single-strand confirmation polymorphism (SSCP) fingerprints based on extracted DNA and RNA. The structure and composition of the bacterial core community in the bulk water was highly similar (>70%) across the city of Braunschweig, Germany, whereas all biofilm samples contained a unique community with no overlapping phylotypes from bulk water. Biofilm samples consisted mainly of Alphaproteobacteria (26% of all phylotypes), Gammaproteobacteria (11%), candidate division TM6 (11%), Chlamydiales (9%), and Betaproteobacteria (9%). The bulk water community consisted primarily of Bacteroidetes (25%), Betaproteobacteria (20%), Actinobacteria (16%), and Alphaproteobacteria (11%). All biofilm communities showed higher relative abundances of single phylotypes and a reduced richness compared to bulk water. Only biofilm communities sampled at nearby sampling points showed similar communities irrespective of support materials. In all of our bulk water studies, the community composition determined from 16S rRNA was completely different from the 16S rRNA gene-based community composition, whereas in biofilms both molecular fractions resulted in community compositions that were similar to each other. We hypothesize that a higher fraction of active bacterial phylotypes and a better protection from oxidative stress in drinking water biofilms are responsible for this higher similarity.  相似文献   

18.
19.
《Anaerobe》2001,7(3):119-134
Bacterial community structure and diversity in the rumen of steers in conditions of hay and corn diets was assessed by in vitro retrieval and analysis of the variable region (V3) of 16S rDNA. Two types of libraries were generated in this study: DGGE libraries, which further were analysed by excising, reamplification, and sequencing, and random shotgun sequence libraries. Phylogenetic and sequence similarity analyses of the resultant 68 clone sequences in DGGE libraries revealed the presence of 42 operational taxonomic units (OTUs) or phylotypes defined as having more than 97% of sequence similarity. One hundred and thirty four clone sequences in shotgun libraries were clustered into 72 phylotypes. The phylotype similarity, diversity, richness, and evenness in these libraries were estimated using a variety of diversity indices. In relation to diet, the corn-fed animals displayed more diverse and rich bacterial populations, which were mostly contributed by CFB-related phylotypes. Proteobacteria were also numerically prevalent on this diet (27%) but were represented by a few phylotypes thus diminishing the overall diversity and species richness values. On hay diet, the principal contributors to general diversity and species richness appeared to be low-G + C gram-positives. Although the ruminal Treponemaes were encountered only in hay-fed animals, their impact on species diversity on hay diet was low because of the limited number of phylotypes.  相似文献   

20.
Fecal microbiota in six elderly individuals were characterized by the 16S rDNA libraries and terminal restriction fragment length polymorphism (T-RFLP) analysis. Random clones of 16S rRNA gene sequences were isolated after PCR amplification with universal primer sets from total genomic DNA extracted from feces of three elderly individuals. These clones were partially sequenced (about 500 bp). T-RFLP analysis was performed using 16S rDNA amplified from six subjects. The lengths of the terminal restriction fragment (T-RF) were analyzed after digestion by HhaI and MspI. Among 240 clones obtained, approximately 46% belonged to 27 known species. About 54% of the other clones were 56 novel "phylotypes" (at least 98% homology of clone sequence). These libraries included 83 species or phylotypes. In addition, about 13% (30 phylotypes) of these phylotypes were newly discovered in these libraries. A large number of species that are not yet known exist in the feces of elderly individuals. 16S rDNA libraries and T-RFLP analysis revealed that the majority of bacteria were Bacteroides and relatives, Clostridium rRNA cluster IV, IX, Clostridium rRNA subcluster XIVa, and "Gammaproteobacteria". The proportion of Clostridium rRNA subcluster XIVa was lower than in healthy adults. In addition, although Ruminococcus obeum and its closely related phylotypes were detected in high frequency in healthy young subjects, hardly any were detected in our elderly individuals. "Gammaproteobacteria" were detected at high frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号