首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two inhibitors, acarbose and cyclodextrins (CD), were used to investigate the active site structure and function of barley alpha-amylase isozymes, AMY1 and AMY2. The hydrolysis of DP 4900-amylose, reduced (r) DP18-maltodextrin and maltoheptaose (catalysed by AMY1 and AMY2) was followed in the absence and in the presence of inhibitor. Without inhibitor, the highest activity was obtained with amylose, kcat/Km decreased 103-fold using rDP18-maltodextrin and 10(5) to 10(6)-fold using maltoheptaose as substrate. Acarbose is an uncompetitive inhibitor with inhibition constant (L1i) for amylose and maltodextrin in the micromolar range. Acarbose did not bind to the active site of the enzyme, but to a secondary site to give an abortive ESI complex. Only AMY2 has a second secondary binding site corresponding to an ESI2 complex. In contrast, acarbose is a mixed noncompetitive inhibitor of maltoheptaose hydrolysis. Consequently, in the presence of this oligosaccharide substrate, acarbose bound both to the active site and to a secondary binding site. alpha-CD inhibited the AMY1 and AMY2 catalysed hydrolysis of amylose, but was a very weak inhibitor compared to acarbose.beta- and gamma-CD are not inhibitors. These results are different from those obtained previously with PPA. However in AMY1, as already shown for amylases of animal and bacterial origin, in addition to the active site, one secondary carbohydrate binding site (s1) was necessary for activity whereas two secondary sites (s1 and s2) were required for the AMY2 activity. The first secondary site in both AMY1 and AMY2 was only functional when substrate was bound in the active site. This appears to be a general feature of the alpha-amylase family.  相似文献   

2.
3.
On the mechanism of OH. scavenger action.   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

4.
C D Poulter  H C Rilling 《Biochemistry》1976,15(5):1079-1083
The enzyme, prenyltransferase, which normally catalyzes the addition of an allylic pyrophosphate to isopentenyl pyrophosphate, has been found to catalyze the hydrolysis of its allylic substrate. The rate of this hydrolysis is markedly stimulated by inorganic pyrophosphate. Competition experiments with 2-fluoroisopentenyl pyrophosphate and inorganic pyrophosphate demonstrated that inorganic pyrophosphate stimulated hydrolysis by binding at the isopentenyl pyrophosphate site. Hydrolysis carried out in H218O or with (1S)-[1-3H]geranyl pyrophosphate show the C-O bond is broken and the C1 carbon of geranyl pyrophosphate is inverted in the process. These results are interpreted to favor a carbonium ion mechanism for the prenyltransferase reaction.  相似文献   

5.
A thermodynamic analysis is presented for the energy conversion by muscle contraction. During the cyclic processes the major change in energy of the myosin-actin system is due to bond formation between myosin heads and actin. To account for the high efficiency of a working muscle the work done is connected directly to the formation of myosin-actin bond. It is suggested that successively stronger bonds are formed by a stepwise movement of myosin heads over an interval between two troponin molecules on the actin filament. At the end of the interval, where the bond has maximum strength, energy is supplied to break the bond. Here the work is not primarily connected to the 45 degrees rotation of myosin heads as is commonly done. A way of separating the different kinds of energy losses is presented.  相似文献   

6.
H G Martinson  R J True 《Biochemistry》1979,18(6):1089-1094
We have studied the relative stabilities to urea denaturation of histone-histone binding interactions as they occur both in chromatin and in histone complexes free in solution. We have used the two zero-length contact-site cross-linking agents, tetranitromethane and UV light, to measure the relative degree of H2B-H4 and H2A-H2B association under various conditions. The two interactions were disrupted coordinately when nuclei were treated with increasing concentrations of urea. In contrast, when histone complex in 2 M NaCl were treated with urea, the H2B-H4 interaction was found to be much less stable than the H2A-H2B interaction. We have shown previously that nucleosomes unfold at low ionic strengths such that the H2B-H4 but not the H2A-H2B interaction is broken in the process. We speculate that the preferential rupture of the H2B-H4 contact is of physiological significance.  相似文献   

7.
The mechanism of the enzymic reaction responsible for chloramphenicol resistance in bacteria was examined by steady-state kinetic methods. The forward reaction catalysed by chloramphenicol acetyltransferase leads to inactivation of the antibiotic. Use of alternative acyl donors and acceptors, as well as the natural substrates, has yielded data that favour the view that the reaction proceeds to the formation of a ternary complex by a rapid-equilibrium mechanism wherein the addition of substrates may be random but a preference for acetyl-CoA as the leading substrate can be detected. Chloramphenicol and acetyl-CoA bind independently, but the correlation between directly determined and kinetically derived dissociation constants is imperfect because of an unreliable slope term in the rate equation. The reverse reaction, yielding acetyl-CoA and chloramphenicol, was studied in a coupled assay involving citrate synthase and malate dehydrogenase, and is best described by a rapid-equilibrium mechanism with random addition of substrates. The directly determined dissociation constant for CoA is in agreement with that derived from kinetic measurements under the assumption of an independent-sites model.  相似文献   

8.
9.
On the mechanism of the chorismate mutase reaction.   总被引:1,自引:0,他引:1  
H G?risch 《Biochemistry》1978,17(18):3700-3705
  相似文献   

10.
11.
Modular primers are strings of three contiguously annealed unligated oligonucleotides (modules) as short as 5- or 6-mers, selected from a presynthesized library. It was previously found that such strings can prime DNA sequencing reactions specifically, thus eliminating the need for the primer synthesis step in DNA sequencing by primer walking. It has remained largely a mystery why modular primers prime uniquely, while a single module, used alone in the same conditions, often shows alternative priming of comparable strength. In a puzzling way, the single module, even in a large excess over the template, no longer primes at the alternative sites, when modules with which it can form a contiguous string are also present. Here we describe experiments indicating that this phenomenon cannot be explained by cooperative annealing of the modules to the template. Instead, the mechanism seems to involve competition between different primers for the available polymerase. In this competition, the polymerase is preferentially engaged by longer primers, whether modular or conventional, at the expense of shorter primers, even though the latter can otherwise prime with similar or occasionally higher efficiency.  相似文献   

12.
Structures, physiological role and level regulation of the juvenile hormones are described. A scheme of juvenile hormone mode of action at the molecular level, which includes transport of hormone via its binding protein, is presented.  相似文献   

13.
An NADPH- and oxygen-dependent enzymatic system responsible for the formation of acetaldehyde from ethylthioethers is present in the 9000 g supernatant fraction of rat liver. This system appears to be quite similar to the one responsible for the formation of formaldehyde from methylthioethers. Although both of these systems appears to be microsomal mixedoxidase systems, several anomalous findings regarding the mechanism of microsomal S-dealkylation have been observed and have led us to the conclusion that the mechanism of this reaction is more complex than originally believed. A scheme is postulated by which an enzyme in the soluble fraction causes microsomal sulfoxidation of alkylthioethers to alkylsulfoxides, followed by metabolism of the alkylsulfoxides to aldehydes.  相似文献   

14.
15.
Chicken liver lactate dehydrogenase L-lactate : NAD+ oxidoreductase, EC1.1.1.27) reversibly catalyses the conversion of hydroxypyruvate to L-glycerate. The variation of the initial reaction rate with the substrate or coenzyme (NADH) concentration together with the inhibition caused by the reaction products and excess substrates, reveal that the kinetic mechanism of the reaction, with hydroxypyruvate as substrate, is of the rapid-equilibrium, ordered-ternary-complex type; NADH is the first substrate in the reaction sequence. Rate equations have been developed for the hydroxypyruvate.E.NADH system without inhibitors, with excess substrates, and with reaction products. Comparison of the rate equations obtained with those calculated theoretically from an ordered-ternary-complex mechanism reveals the existence of E.NAD.NADH,E.NAD-hydroxypyruvate and E.hydroxypyruvate complexes.  相似文献   

16.
In order to further elucidate the mechanism of tRNA methylase-tRNA intreaction the methylation of some individual tRNAs separately and by pairs was performed. In conditions of tRNA excess the methylation rates of positionally analogous nucleotides in tRNA molecules are not summed up when two substrates are simultaneously present in the reaction mixture. The inhibitory action of yeast tRNASer, possessing m5c in position 29, on the methylation of C29 in other individual tRNAs was shown. Yeast tRNAVal which possesses an A residue in position 27 was shown to inhibit the methylation of G27 in E. coli tRNAMet. The data obtained confirm the suggestion that tRNA methylases recognizes the tertiary structure of tRNAs. They show also that the recognition and the proper catalytic action are two autonomous processes and that the former at least in its first stage is rather unspecific.  相似文献   

17.
18.
19.
Structural models of the MscL gating mechanism.   总被引:9,自引:0,他引:9       下载免费PDF全文
Three-dimensional structural models of the mechanosensitive channel of large conductance, MscL, from the bacteria Mycobacterium tuberculosis and Escherichia coli were developed for closed, intermediate, and open conformations. The modeling began with the crystal structure of M. tuberculosis MscL, a homopentamer with two transmembrane alpha-helices, M1 and M2, per subunit. The first 12 N-terminal residues, not resolved in the crystal structure, were modeled as an amphipathic alpha-helix, called S1. A bundle of five parallel S1 helices are postulated to form a cytoplasmic gate. As membrane tension induces expansion, the tilts of M1 and M2 are postulated to increase as they move away from the axis of the pore. Substantial expansion is postulated to occur before the increased stress in the S1 to M1 linkers pulls the S1 bundle apart. During the opening transition, the S1 helices and C-terminus amphipathic alpha-helices, S3, are postulated to dock parallel to the membrane surface on the perimeter of the complex. The proposed gating mechanism reveals critical spatial relationships between the expandable transmembrane barrel formed by M1 and M2, the gate formed by S1 helices, and "strings" that link S1s to M1s. These models are consistent with numerous experimental results and modeling criteria.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号