首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Climate change is already affecting the distributions of many species and may lead to numerous extinctions over the next century. Small-range species are likely to be a special concern, but the extent to which they are sensitive to climate is currently unclear. Species distribution modeling, if carefully implemented, can be used to assess climate sensitivity and potential climate change impacts, even for rare and cryptic species.

Methodology/Principal Findings

We used species distribution modeling to assess the climate sensitivity, climate change risks and conservation implications for a threatened small-range mammal species, the Iberian desman (Galemys pyrenaicus), which is a phylogenetically isolated insectivore endemic to south-western Europe. Atlas data on the distribution of G. pyrenaicus was linked to data on climate, topography and human impact using two species distribution modeling algorithms to test hypotheses on the factors that determine the range for this species. Predictive models were developed and projected onto climate scenarios for 2070–2099 to assess climate change risks and conservation possibilities. Mean summer temperature and water balance appeared to be the main factors influencing the distribution of G. pyrenaicus. Climate change was predicted to result in significant reductions of the species'' range. However, the severity of these reductions was highly dependent on which predictor was the most important limiting factor. Notably, if mean summer temperature is the main range determinant, G. pyrenaicus is at risk of near total extinction in Spain under the most severe climate change scenario. The range projections for Europe indicate that assisted migration may be a possible long-term conservation strategy for G. pyrenaicus in the face of global warming.

Conclusions/Significance

Climate change clearly poses a severe threat to this illustrative endemic species. Our findings confirm that endemic species can be highly vulnerable to a warming climate and highlight the fact that assisted migration has potential as a conservation strategy for species threatened by climate change.  相似文献   

2.
Xia J  Wan S 《PloS one》2012,7(2):e32088

Background

The longer growing season under climate warming has served as a crucial mechanism for the enhancement of terrestrial carbon (C) sink over the past decades. A better understanding of this mechanism is critical for projection of changes in C cycling of terrestrial ecosystems.

Methodology/Principal Findings

A 4-year field experiment with day and night warming was conducted to examine the responses of plant phenology and their influences on plant coverage and ecosystem C cycling in a temperate steppe in northern China. Greater phenological responses were observed under night than day warming. Both day and night warming prolonged the growing season by advancing phenology of early-blooming species but without changing that of late-blooming species. However, no warming response of vegetation coverage was found for any of the eight species. The variances in species-level coverage and ecosystem C fluxes under different treatments were positively dependent upon the accumulated precipitation within phenological duration but not the length of phenological duration.

Conclusions/Significance

These plants'' phenology is more sensitive to night than day warming, and the warming effects on ecosystem C exchange via shifting plant phenology could be mediated by precipitation patterns in semi-arid grasslands.  相似文献   

3.
Jesse R  Véla E  Pfenninger M 《PloS one》2011,6(6):e20734

Background

Fragmented distribution ranges of species with little active dispersal capacity raise the question about their place of origin and the processes and timing of either range fragmentation or dispersal. The peculiar distribution of the land snail Tudorella sulcata s. str. in Southern France, Sardinia and Algeria is such a challenging case.

Methodology

Statistical phylogeographic analyses with mitochondrial COI and nuclear hsp70 haplotypes were used to answer the questions of the species'' origin, sequence and timing of dispersal. The origin of the species was on Sardinia. Starting from there, a first expansion to Algeria and then to France took place. Abiotic and zoochorous dispersal could be excluded by considering the species'' life style, leaving only anthropogenic translocation as parsimonious explanation. The geographic expansion could be dated to approximately 8,000 years before present with a 95% confidence interval of 10,000 to 3,000 years before present.

Conclusions

This period coincides with the Neolithic expansion in the Western Mediterranean, suggesting a role of these settlers as vectors. Our findings thus propose that non-domesticated animals and plants may give hints on the direction and timing of early human expansion routes.  相似文献   

4.

Background and Aims

Phenology is one of most sensitive traits of plants in response to regional climate warming. Better understanding of the interactive effects between warming and other environmental change factors, such as increasing atmosphere nitrogen (N) deposition, is critical for projection of future plant phenology.

Methods

A 4-year field experiment manipulating temperature and N has been conducted in a temperate steppe in northern China. Phenology, including flowering and fruiting date as well as reproductive duration, of eight plant species was monitored and calculated from 2006 to 2009.

Key Results

Across all the species and years, warming significantly advanced flowering and fruiting time by 0·64 and 0·72 d per season, respectively, which were mainly driven by the earliest species (Potentilla acaulis). Although N addition showed no impact on phenological times across the eight species, it significantly delayed flowering time of Heteropappus altaicus and fruiting time of Agropyron cristatum. The responses of flowering and fruiting times to warming or N addition are coupled, leading to no response of reproductive duration to warming or N addition for most species. Warming shortened reproductive duration of Potentilla bifurca but extended that of Allium bidentatum, whereas N addition shortened that of A. bidentatum. No interactive effect between warming and N addition was found on any phenological event. Such additive effects could be ascribed to the species-specific responses of plant phenology to warming and N addition.

Conclusions

The results suggest that the warming response of plant phenology is larger in earlier than later flowering species in temperate grassland systems. The effects of warming and N addition on plant phenology are independent of each other. These findings can help to better understand and predict the response of plant phenology to climate warming concurrent with other global change driving factors.  相似文献   

5.

Background

Climate change is increasingly being implicated in species'' range shifts throughout the world, including those of important vector and reservoir species for infectious diseases. In North America (México, United States, and Canada), leishmaniasis is a vector-borne disease that is autochthonous in México and Texas and has begun to expand its range northward. Further expansion to the north may be facilitated by climate change as more habitat becomes suitable for vector and reservoir species for leishmaniasis.

Methods and Findings

The analysis began with the construction of ecological niche models using a maximum entropy algorithm for the distribution of two sand fly vector species (Lutzomyia anthophora and L. diabolica), three confirmed rodent reservoir species (Neotoma albigula, N. floridana, and N. micropus), and one potential rodent reservoir species (N. mexicana) for leishmaniasis in northern México and the United States. As input, these models used species'' occurrence records with topographic and climatic parameters as explanatory variables. Models were tested for their ability to predict correctly both a specified fraction of occurrence points set aside for this purpose and occurrence points from an independently derived data set. These models were refined to obtain predicted species'' geographical distributions under increasingly strict assumptions about the ability of a species to disperse to suitable habitat and to persist in it, as modulated by its ecological suitability. Models successful at predictions were fitted to the extreme A2 and relatively conservative B2 projected climate scenarios for 2020, 2050, and 2080 using publicly available interpolated climate data from the Third Intergovernmental Panel on Climate Change Assessment Report. Further analyses included estimation of the projected human population that could potentially be exposed to leishmaniasis in 2020, 2050, and 2080 under the A2 and B2 scenarios. All confirmed vector and reservoir species will see an expansion of their potential range towards the north. Thus, leishmaniasis has the potential to expand northwards from México and the southern United States. In the eastern United States its spread is predicted to be limited by the range of L. diabolica; further west, L. anthophora may play the same role. In the east it may even reach the southern boundary of Canada. The risk of spread is greater for the A2 scenario than for the B2 scenario. Even in the latter case, with restrictive (contiguous) models for dispersal of vector and reservoir species, and limiting vector and reservoir species occupancy to only the top 10% of their potential suitable habitat, the expected number of human individuals exposed to leishmaniasis by 2080 will at least double its present value.

Conclusions

These models predict that climate change will exacerbate the ecological risk of human exposure to leishmaniasis in areas outside its present range in the United States and, possibly, in parts of southern Canada. This prediction suggests the adoption of measures such as surveillance for leishmaniasis north of Texas as disease cases spread northwards. Potential vector and reservoir control strategies—besides direct intervention in disease cases—should also be further investigated.  相似文献   

6.

Background and Aims

Riparian systems are prone to invasion by alien plant species. The spread of invasive riparian plants may be facilitated by hydrochory, the transport of seeds by water, but while ecological studies have highlighted the possible role of upstream source populations in the establishment and persistence of stands of invasive riparian plant species, population genetic studies have as yet not fully addressed the potential role of hydrochoric dispersal in such systems.

Methods

A population genetics approach based on a replicated bifurcate sampling design is used to test hypotheses consistent with patterns of unidirectional, linear gene flow expected under hydrochoric dispersal of the invasive riparian plant Impatiens glandulifera in two contrasting river systems.

Key results

A significant increase in levels of genetic diversity downstream was observed, consistent with the accumulation of propagules from upstream source populations, and strong evidence was found for organization of this diversity between different tributaries, reflecting the dendritic organization of the river systems studied.

Conclusions

These findings indicate that hydrochory, rather than anthropogenic dispersal, is primarily responsible for the spread of I. glandulifera in these river systems, and this is relevant to potential approaches to the control of invasive riparian plant species.  相似文献   

7.
Ma LN  Lü XT  Liu Y  Guo JX  Zhang NY  Yang JQ  Wang RZ 《PloS one》2011,6(11):e27645

Background

Both climate warming and atmospheric nitrogen (N) deposition are predicted to affect soil N cycling in terrestrial biomes over the next century. However, the interactive effects of warming and N deposition on soil N mineralization in temperate grasslands are poorly understood.

Methodology/Principal Findings

A field manipulation experiment was conducted to examine the effects of warming and N addition on soil N cycling in a temperate grassland of northeastern China from 2007 to 2009. Soil samples were incubated at a constant temperature and moisture, from samples collected in the field. The results showed that both warming and N addition significantly stimulated soil net N mineralization rate and net nitrification rate. Combined warming and N addition caused an interactive effect on N mineralization, which could be explained by the relative shift of soil microbial community structure because of fungal biomass increase and strong plant uptake of added N due to warming. Irrespective of strong intra- and inter-annual variations in soil N mineralization, the responses of N mineralization to warming and N addition did not change during the three growing seasons, suggesting independence of warming and N responses of N mineralization from precipitation variations in the temperate grassland.

Conclusions/Significance

Interactions between climate warming and N deposition on soil N cycling were significant. These findings will improve our understanding on the response of soil N cycling to the simultaneous climate change drivers in temperate grassland ecosystem.  相似文献   

8.

Background and Aims

Vulnerability of the leaf hydraulic pathway to water-stress-induced dysfunction is a key component of drought tolerance in plants and may be important in defining species'' climatic range. However, the generality of the association between leaf hydraulic vulnerability and climate across species and sites remains to be tested.

Methods

Leaf hydraulic vulnerability to drought (P50leaf, the water potential inducing 50 % loss in hydraulic function) was measured in a diverse group of 92 woody, mostly evergreen angiosperms from sites across a wide range of habitats. These new data together with some previously published were tested against key climate indices related to water availability. Differences in within-site variability in P50leaf between sites were also examined.

Key Results

Values of hydraulic vulnerability to drought in leaves decreased strongly (i.e. became more negative) with decreasing annual rainfall and increasing aridity across sites. The standard deviation in P50leaf values recorded within each site was positively correlated with increasing aridity. P50leaf was also a good indicator of the climatic envelope across each species'' distributional range as well as their dry-end distributional limits within Australia, although this relationship was not consistently detectable within sites.

Conclusions

The findings indicate that species sorting processes have influenced distributional patterns of P50leaf across the rainfall spectrum, but alternative strategies for dealing with water deficit exist within sites. The strong link to aridity suggests leaf hydraulic vulnerability may influence plant distributions under future climates.  相似文献   

9.

Background

Depression is a common, recurrent, and debilitating problem and Internet delivered cognitive behaviour therapy (iCBT) could offer one solution. There are at least 25 controlled trials that demonstrate the efficacy of iCBT. The aim of the current paper was to evaluate the effectiveness of an iCBT Program in primary care that had been demonstrated to be efficacious in two randomized controlled trials (RCTs).

Method

Quality assurance data from 359 patients prescribed the Sadness Program in Australia from October 2010 to November 2011 were included.

Results

Intent-to-treat marginal model analyses demonstrated significant reductions in depressive symptoms (PHQ9), distress (K10), and impairment (WHODAS-II) with medium-large effect sizes (Cohen''s d = .51–1.13.), even in severe and/or suicidal patients (Cohen''s d = .50–1.49.) Secondary analyses on patients who completed all 6 lessons showed levels of clinically significant change as indexed by established criteria for remission, recovery, and reliable change.

Conclusions

The Sadness Program is effective when prescribed by primary care practitioners and is consistent with a cost-effective stepped-care framework.  相似文献   

10.
Climate warming could shift the timing of seed germination in alpine plants   总被引:1,自引:0,他引:1  

Background and Aims

Despite the considerable number of studies on the impacts of climate change on alpine plants, there have been few attempts to investigate its effect on regeneration. Recruitment from seeds is a key event in the life-history of plants, affecting their spread and evolution and seasonal changes in climate will inevitably affect recruitment success. Here, an investigation was made of how climate change will affect the timing and the level of germination in eight alpine species of the glacier foreland.

Methods

Using a novel approach which considered the altitudinal variation of temperature as a surrogate for future climate scenarios, seeds were exposed to 12 different cycles of simulated seasonal temperatures in the laboratory, derived from measurements at the soil surface at the study site.

Key Results

Under present climatic conditions, germination occurred in spring, in all but one species, after seeds had experienced autumn and winter seasons. However, autumn warming resulted in a significant increase in germination in all but two species. In contrast, seed germination was less sensitive to changes in spring and/or winter temperatures, which affected only three species.

Conclusions

Climate warming will lead to a shift from spring to autumn emergence but the extent of this change across species will be driven by seed dormancy status. Ungerminated seeds at the end of autumn will be exposed to shorter winter seasons and lower spring temperatures in a future, warmer climate, but these changes will only have a minor impact on germination. The extent to which climate change will be detrimental to regeneration from seed is less likely to be due to a significant negative effect on germination per se, but rather to seedling emergence in seasons that the species are not adapted to experience. Emergence in autumn could have major implications for species currently adapted to emerge in spring.  相似文献   

11.

Background

Annual movements of tri-colored bats (Perimyotis subflavus) are poorly understood. While this species has been considered a regional migrant, some evidence suggests that it may undertake annual latitudinal migrations, similar to other long distance North American migratory bat species.

Methodology/Principal Findings

We investigated migration in P. subflavus by conducting stable hydrogen isotope analyses of 184 museum specimen fur samples and comparing these results (δDfur) to published interpolated δD values of collection site growing season precipitation (δDprecip). Results suggest that the male molt period occurred between June 23 and October 16 and 33% of males collected during the presumed non-molt period were south of their location of fur growth. For the same time period, 16% of females were south of their location of fur growth and in general, had not travelled as far as migratory males. There were strong correlations between δDfur from the presumed molt period and both growing season δDprecip (males – r 2 = 0.86; p<0.01; females – r 2 = 0.75; p<0.01), and latitude of collection (males – r 2 = 0.85; p<0.01; females – r 2 = 0.73; p<0.01). Most migrants were collected at the northern (>40°N; males and females) and southern (<35°N; males only) extents of the species'' range.

Conclusions/Significance

These results indicate a different pattern of migration for this species than previously documented, suggesting that some P. subflavus engage in annual latitudinal migrations and that migratory tendency varies with latitude and between sexes. We suggest that this species'' hibernation ecology makes it particularly susceptible to long winters, making migration from the northern extent of the species'' range to more southern hibernacula preferable for some individuals. Fur δD values for some of the northern individuals may indicate an increase in the currently accepted northern range of this species. Sex-biased differences in migration may be the result of differences in reproductive pressures.  相似文献   

12.

Background and Aims

Climate change is expected to alter the geographic range of many plant species dramatically. Predicting this response will be critical to managing the conservation of plant resources and the effects of invasive species. The aim of this study was to predict the response of temperate homosporous ferns to climate change.

Methods

Genetic diversity and changes in distribution range were inferred for the diploid rock fern Asplenium fontanum along a South–North transect, extending from its putative last glacial maximum (LGM) refugia in southern France towards southern Germany and eastern-central France. This study reconciles observations from distribution models and phylogeographic analyses derived from plastid and nuclear diversity.

Key Results

Genetic diversity distribution and niche modelling propose that genetic diversity accumulates in the LGM climate refugium in southern France with the formation of a diversity gradient reflecting a slow, post-LGM range expansion towards the current distribution range. Evidence supports the fern''s preference for outcrossing, contradicting the expectation that homosporous ferns would populate new sites by single-spore colonization. Prediction of climate and distribution range change suggests that a dramatic loss of range and genetic diversity in this fern is possible. The observed migration is best described by the phalanx expansion model.

Conclusions

The results suggest that homosporous ferns reproducing preferentially by outcrossing accumulate genetic diversity primarily in LGM climate refugia and may be threatened if these areas disappear due to global climate change.  相似文献   

13.

Background

Intensification of world trade is responsible for an increase in the number of alien species introductions. Human-mediated dispersal promotes not only introductions but also expansion of the species distribution via long-distance dispersal. Thus, understanding the role of anthropogenic pathways in the spread of invading species has become one of the most important challenges nowadays.

Methodology/Principal Findings

We analysed the invasion pattern of the pinewood nematode in China based on invasion data from 1982 to 2005 and monitoring data on 7 locations over 15 years. Short distance spread mediated by long-horned beetles was estimated at 7.5 km per year. Infested sites located further away represented more than 90% of observations and the mean long distance spread was estimated at 111–339 km. Railways, river ports, and lakes had significant effects on the spread pattern. Human population density levels explained 87% of the variation in the invasion probability (P<0.05). Since 2001, the number of new records of the nematode was multiplied by a factor of 5 and the spread distance by a factor of 2. We combined a diffusion model to describe the short distance spread with a stochastic, individual based model to describe the long distance jumps. This combined model generated an error of only 13% when used to predict the presence of the nematode. Under two climate scenarios (stable climate or moderate warming), projections of the invasion probability suggest that this pest could expand its distribution 40–55% by 2025.

Conclusions/Significance

This study provides evidence that human-induced dispersal plays a fundamental role in the spread of the pinewood nematode, and appropriate control measures should be taken to stop or slow its expansion. This model can be applied to Europe, where the nematode had been introduced later, and is currently expanding its distribution. Similar models could also be derived for other species that could be accidentally transported by humans.  相似文献   

14.

Background

The global movement and speciation of fungal plant pathogens is important, especially because of the economic losses they cause and the ease with which they are able to spread across large areas. Understanding the biogeography and origin of these plant pathogens can provide insights regarding their dispersal and current day distribution. We tested the hypothesis of a Gondwanan origin of the plant pathogenic mushroom genus Armillaria and the currently accepted premise that vicariance accounts for the extant distribution of the species.

Methods

The phylogeny of a selection of Armillaria species was reconstructed based on Maximum Parsimony (MP), Maximum Likelihood (ML) and Bayesian Inference (BI). A timeline was then placed on the divergence of lineages using a Bayesian relaxed molecular clock approach.

Results

Phylogenetic analyses of sequenced data for three combined nuclear regions provided strong support for three major geographically defined clades: Holarctic, South American-Australasian and African. Molecular dating placed the initial radiation of the genus at 54 million years ago within the Early Paleogene, postdating the tectonic break-up of Gondwana.

Conclusions

The distribution of extant Armillaria species is the result of ancient long-distance dispersal rather than vicariance due to continental drift. As these finding are contrary to most prior vicariance hypotheses for fungi, our results highlight the important role of long-distance dispersal in the radiation of fungal pathogens from the Southern Hemisphere.  相似文献   

15.
Pluess AR  Weber P 《PloS one》2012,7(3):e33636

Background

Microevolution is essential for species persistence especially under anticipated climate change scenarios. Species distribution projection models suggested that the dominant tree species of lowland forests in Switzerland, European beech (Fagus sylvatica L.), might disappear from most areas due to expected longer dry periods. However, if genotypes at the moisture boundary of the species climatic envelope are adapted to lower moisture availability, they can serve as seed source for the continuation of beech forests under changing climates.

Methodology/Principal Findings

With an AFLP genome scan approach, we studied neutral and potentially adaptive genetic variation in Fagus sylvatica in three regions containing a dry and a mesic site each (n ind. = 241, n markers = 517). We linked this dataset with dendrochronological growth measures and local moisture availabilities based on precipitation and soil characteristics. Genetic diversity decreased slightly at dry sites. Overall genetic differentiation was low (F st = 0.028) and Bayesian cluster analysis grouped all populations together suggesting high (historical) gene flow. The Bayesian outlier analyses indicated 13 markers with three markers differing between all dry and mesic sites and the others between the contrasting sites within individual regions. A total of 41 markers, including seven outlier loci, changed their frequency with local moisture availability. Tree height and median basal growth increments were reduced at dry sites, but marker presence/absence was not related to dendrochronological characteristics.

Conclusion and Their Significance

The outlier alleles and the makers with changing frequencies in relation to moisture availability indicate microevolutionary processes occurring within short geographic distances. The general genetic similarity among sites suggests that ‘preadaptive’ genes can easily spread across the landscape. Yet, due to the long live span of trees, fostering saplings originating from dry sites and grown within mesic sites might increase resistance of beech forests during the anticipated longer dry periods.  相似文献   

16.

Objective

To evaluate the effect of an improved salt-restriction spoon on the attitude of salt-restriction, the using rate of salt-restriction-spoon, the actual salt intake, and 24-hour urinary sodium excretion (24HUNa).

Design

A community intervention study.

Setting

Two villages in Beijing.

Participants

403 local adult residents being responsible for home cooking.

Intervention

Participants were randomly assigned to the intervention group or the control group. Those in the intervention group were provided with an improved salt-restriction-spoon and health education, and were informed of their actual salt intake and 24HUNa. Not any intervention was given to those in the control group.

Main Outcome Measures

The scores on the variables of Health Belief Model, the using rate of salt-restriction-spoon, the actual salt intake, and 24HUNa.

Analysis

Covariance analyses, Chi-square tests, Student’s t tests, and repeated measures analyses of variance.

Results

After 6 months of intervention, the intervention group felt significantly less objective barriers, and got access to significantly more cues to action as compared to the control group. The using rate and the correctly using rate of salt-restriction-spoon were significantly higher in the intervention group. The daily salt intake decreased by 1.42 g in the intervention group and by 0.28 g in the control group, and repeated measures analysis of variance showed significant change over time (F = 7.044, P<0.001) and significant difference between groups by time (F = 2.589, P = 0.041). The 24HUNa decreased by 34.84 mmol in the intervention group and by 33.65 mmol in the control group, and repeated measures analysis of variance showed significant change over time (F = 14.648, P<0.001) without significant difference between groups by time (F = 0.222, P = 0.870).

Conclusions

The intervention effect was acceptable, therefore, the improved salt-restriction-spoon and corresponding health education could be considered as an alternative for salt reduction strategy in China and other countries where salt intake comes mainly from home cooking.  相似文献   

17.

Context

Uncovering heterogeneities in the progression of early PTSD symptoms can improve our understanding of the disorder''s pathogenesis and prophylaxis.

Objectives

To describe discrete symptom trajectories and examine their relevance for preventive interventions.

Design

Latent Growth Mixture Modeling (LGMM) of data from a randomized controlled study of early treatment. LGMM identifies latent longitudinal trajectories by exploring discrete mixture distributions underlying observable data.

Setting

Hadassah Hospital unselectively receives trauma survivors from Jerusalem and vicinity.

Participants

Adult survivors of potentially traumatic events consecutively admitted to the hospital''s emergency department (ED) were assessed ten days and one-, five-, nine- and fifteen months after ED admission. Participants with data at ten days and at least two additional assessments (n = 957) were included; 125 received cognitive behavioral therapy (CBT) between one and nine months.

Approach

We used LGMM to identify latent parameters of symptom progression and tested the effect of CBT on these parameters. CBT consisted of 12 weekly sessions of either cognitive therapy (n = 41) or prolonged exposure (PE, n = 49), starting 29.8±5.7 days after ED admission, or delayed PE (n = 35) starting at 151.8±42.4 days. CBT effectively reduced PTSD symptoms in the entire sample.

Main Outcome Measure

Latent trajectories of PTSD symptoms; effects of CBT on these trajectories.

Results

Three trajectories were identified: Rapid Remitting (rapid decrease in symptoms from 1- to 5-months; 56% of the sample), Slow Remitting (progressive decrease in symptoms over 15 months; 27%) and Non-Remitting (persistently elevated symptoms; 17%). CBT accelerated the recovery of the Slow Remitting class but did not affect the other classes.

Conclusions

The early course of PTSD symptoms is characterized by distinct and diverging response patterns that are centrally relevant to understanding the disorder and preventing its occurrence. Studies of the pathogenesis of PTSD may benefit from using clustered symptom trajectories as their dependent variables.  相似文献   

18.
T Wu  S Hao  OJ Sun  L Kang 《PloS one》2012,7(7):e41764

Background

Global warming is characterized by not only an increase in the daily mean temperature, but also a diel asymmetric pattern. However, most of the current studies on climate change have only concerned with the mean values of the warming trend. Although many studies have been conducted concerning the responses of insects to climate change, studies that address the issue of diel asymmetric warming under field conditions are not found in the literature.

Methodology/Principal Findings

We conducted a field climate manipulative experiment and investigated developmental and demographic responses to diel asymmetric warming in three grasshopper species (an early-season species Dasyhippus barbipes, a mid-season species Oedaleus asiaticus, and a late-season species Chorthippus fallax). It was found that warming generally advanced the development of eggs and nymphs, but had no apparent impacts on the hatching rate of eggs, the emergence rate of nymphs and the survival and fecundity of adults in all the three species. Nighttime warming was more effective in advancing egg development than the daytime warming. The emergence time of adults was differentially advanced by warming in the three species; it was advanced by 5.64 days in C. fallax, 3.55 days in O. asiaticus, and 1.96 days in D. barbipes. This phenological advancement was associated with increases in the effective GDDs accumulation.

Conclusions/Significance

Results in this study indicate that the responses of the three grasshopper species to warming are influenced by several factors, including species traits, developmental stage, and the thermal sensitivity of the species. Moreover, species with diapausing eggs are less responsive to changes in temperature regimes, suggesting that development of diapausing eggs is a protective mechanism in early-season grasshopper for avoiding the risk of pre-winter hatching. Our results highlight the need to consider the complex relationships between climate change and specificity responses of invertebrates.  相似文献   

19.

Background and Aims

Environmental change is increasingly impacting ecosystems worldwide. However, our knowledge about the interacting effects of various drivers of global change on sexual reproduction of plants, one of their key mechanisms to cope with change, is limited. This study examines populations of poorly regenerating and threatened common juniper (Juniperus communis) to determine the influence of four drivers of global change (rising temperatures, nitrogen deposition, potentially acidifying deposition and altering precipitation patterns) on two key developmental phases during sexual reproduction, gametogenesis and fertilization (seed phase two, SP2) and embryo development (seed phase three, SP3), and on the ripening time of seeds.

Methods

In 42 populations throughout the distribution range of common juniper in Europe, 11 943 seeds of two developmental phases were sampled. Seed viability was determined using seed dissection and related to accumulated temperature (expressed as growing degree-days), nitrogen and potentially acidifying deposition (nitrogen plus sulfur), and precipitation data.

Key Results

Precipitation had no influence on the viability of the seeds or on the ripening time. Increasing temperatures had a negative impact on the viability of SP2 and SP3 seeds and decreased the ripening time. Potentially acidifying depositions negatively influenced SP3 seed viability, while enhanced nitrogen deposition led to lower ripening times.

Conclusions

Higher temperatures and atmospheric deposition affected SP3 seeds more than SP2 seeds. However, this is possibly a delayed effect as juniper seeds develop practically independently, due to the absence of vascular communication with the parent plant from shortly after fertilization. It is proposed that the failure of natural regeneration in many European juniper populations might be attributed to climate warming as well as enhanced atmospheric deposition of nitrogen and sulfur.  相似文献   

20.

Background

Several interventions to improve cognition in at risk children have been suggested. Identification of key variables predicting cognition is necessary to guide these interventions. This study was conducted to identify these variables in Ugandan children and guide such interventions.

Methods

A cohort of 89 healthy children (45 females) aged 5 to 12 years old were followed over 24 months and had cognitive tests measuring visual spatial processing, memory, attention and spatial learning administered at baseline, 6 months and 24 months. Nutritional status, child''s educational level, maternal education, socioeconomic status and quality of the home environment were also measured at baseline. A multivariate, longitudinal model was then used to identify predictors of cognition over the 24 months.

Results

A higher child''s education level was associated with better memory (p = 0.03), attention (p = 0.005) and spatial learning scores over the 24 months (p = 0.05); higher nutrition scores predicted better visual spatial processing (p = 0.002) and spatial learning scores (p = 0.008); and a higher home environment score predicted a better memory score (p = 0.03).

Conclusion

Cognition in Ugandan children is predicted by child''s education, nutritional status and the home environment. Community interventions to improve cognition may be effective if they target multiple socioeconomic variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号