首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bax-type cytochrome c oxidase from Thermus thermophilus is known as a two subunit enzyme. Deduced from the crystal structure of this enzyme, we discovered the presence of an additional transmembrane helix "subunit IIa" spanning the membrane. The hydrophobic N-terminally blocked protein was isolated in high yield using high-performance liquid chromatography. Its complete amino acid sequence was determined by a combination of automated Edman degradation of both the deformylated and the cyanogen bromide cleaved protein and automated C-terminal sequencing of the native protein. The molecular mass of 3,794 Da as determined by MALDI-MS and by ESI requires the N-terminal methionine to be formylated and is in good agreement with the value calculated from the formylmethionine containing sequence (3,766.5 Da + 28 Da = 3,794.5 Da). This subunit consits of 34 residues forming one helix across the membrane (Lys5-Ala34), which corresponds in space to the first transmembrane helix of subunit II of the cytochrome c oxidases from Paracoccus denitrificans and bovine heart, however, with opposite polarity. It is 35% identical to subunit IV of the ba3-cytochrome oxidase from Natronobacterium pharaonis. The open reading frame encoding this new subunit IIa (cbaD) is located upstream of cbaB in the same operon as the genes for subunit I (cbaA) and subunit II (cbaB).  相似文献   

2.
Cytochrome caa3, a cytochrome c oxidase from Thermus thermophilus, is a two-subunit enzyme containing the four canonical metal centers of cytochrome c oxidases (cytochromes a and a3; copper centers CuA and CuB) and an additional cytochrome c. The smaller subunit contains heme C and was termed the C-protein. We have cloned the genes encoding the subunits of the oxidase and determined the nucleotide sequence of the C-protein gene. The gene and deduced primary amino acid sequences establish that both the gene and the protein are fusions with a typical subunit II sequence and a characteristic cytochrome c sequence; we now call this subunit IIc. The protein thus appears to represent a covalent joining of substrate (cytochrome c) to its enzyme (cytochrome c oxidase). In common with other subunits II, subunit IIc contains two hydrophobic segments of amino acids near the amino terminus that probably form transmembrane helices. Variability analysis of the Thermus and other subunit II sequences suggests that the two putative transmembrane helices in subunit II may be located on the surface of the hydrophobic portion of the intact cytochrome oxidase protein complex. Also in common with other subunits II is a relatively hydrophilic intermembrane domain containing a set of conserved amino acids (2 cysteines and 2 histidines) which have previously been proposed by others to serve as ligands to the CuA center. We compared the subunit IIc sequence with that of related proteins. N2O reductase of Pseudomonas stutzeri, a multi-copper protein that appears to contain a CuA site (Scott, R.A., Zumft, W.G., Coyle, C.L., and Dooley, D.M. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 4082-4086), contains a 59-residue sequence element that is homologous to the "CuA sequence motif" found in cytochrome oxidase subunits II, including all four putative copper ligands. By contrast, subunit II of the Escherichia coli quinol oxidase, cytochrome bo, also contains a region homologous to the CuA motif, but it lacks the proposed metal binding histidine and cysteine residues; this is consistent with the apparent absence of CuA from cytochrome bo.  相似文献   

3.
Aquifex aeolicus, a hyperthermophilic and microaerophilic bacterium, obtains energy for growth from inorganic compounds alone. It was previously proposed that one of the respiratory pathways in this organism consists of the electron transfer from hydrogen sulfide (H(2)S) to molecular oxygen. H(2)S is oxidized by the sulfide quinone reductase, a membrane-bound flavoenzyme, which reduces the quinone pool. We have purified and characterized a novel membrane-bound multienzyme supercomplex that brings together all the molecular components involved in this bioenergetic chain. Our results indicate that this purified structure consists of one dimeric bc(1) complex (complex III), one cytochrome c oxidase (complex IV), and one or two sulfide quinone reductases as well as traces of the monoheme cytochrome c(555) and quinone molecules. In addition, this work strongly suggests that the cytochrome c oxidase in the supercomplex is a ba(3)-type enzyme. The supercomplex has a molecular mass of about 350 kDa and is enzymatically functional, reducing O(2) in the presence of the electron donor, H(2)S. This is the first demonstration of the existence of such a respirasome carrying a sulfide oxidase-oxygen reductase activity. Moreover, the kinetic properties of the sulfide quinone reductase change slightly when integrated in the supercomplex, compared with the free enzyme. We previously purified a complete respirasome involved in hydrogen oxidation and sulfur reduction from Aquifex aeolicus. Thus, two different bioenergetic pathways (sulfur reduction and sulfur oxidation) are organized in this bacterium as supramolecular structures in the membrane. A model for the energetic sulfur metabolism of Aquifex aeolicus is proposed.  相似文献   

4.
We constructed expression plasmids containing cbaAB, the structural genes for the two-subunit cytochrome bo(3)-type cytochrome c oxidase (SoxB type) recently isolated from a Gram-positive thermophile Bacillus stearothermophilus. B. stearothermophilus cells transformed with the plasmids over-expressed an enzymatically active bo(3)-type cytochrome c oxidase protein composed of the two subunits, while the transformed Escherichia coli cells produced an inactive protein composed of subunit I without subunit II. The oxidase over-expressed in B. stearothermophilus was solubilized and purified. The oxidase contained protoheme IX and heme O, as the main low-spin heme and the high-spin heme, respectively. Analysis of the substrate specificity indicated that the high-affinity site is very specific for cytochrome c-551, a cytochrome c that is a membrane-bound lipoprotein of thermophilic Bacillus. The purified enzyme reconstituted into liposomal vesicles with cytochrome c-551 showed H(+) pumping activity, although the efficiency was lower than those of cytochrome aa(3)-type oxidases belonging to the SoxM-type.  相似文献   

5.
An open reading frame optimized for expression of 6,7-dimethyl-8-ribityl-lumazine synthase of the hyperthermophilic bacterium Aquifex aeolicus in Escherichia coli was synthesized and expressed in a recombinant E. coli strain to a level of around 15 %. The recombinant protein was purified by heat-treatment and gel-filtration. The protein was crystallized in the cubic space group I23 with the cell dimensions a = b = c = 180.8 A, and diffraction data were collected to 1.6 A resolution. The structure was solved by molecular replacement using lumazine synthase from Bacillus subtilis as search model. The structure of the A. aeolicus enzyme was refined to a resolution of 1.6 A. The spherical protein consists of 60 identical subunits with strict icosahedral 532 symmetry. The subunit fold is closely related to that of the B. subtilis enzyme (rmsd 0.80 A). The extremely thermostable lumazine synthase from A. aeolicus has a melting temperature of 119.9 degrees C. Compared to other icosahedral and pentameric lumazine synthases, the A. aeolicus enzyme has the largest accessible surface presented by charged residues and the smallest surface presented by hydrophobic residues. It also has the largest number of ion-pairs per subunit. Two ion-pair networks involving two, respectively three, stacking arginine residues assume a distinct role in linking adjacent subunits. The findings indicate the influence of the optimization of hydrophobic and ionic contacts in gaining thermostability.  相似文献   

6.
Abstract Formate dehydrogenase from Desulfovibrio vulgaris Hildenborough, a sulfate-reducing bacterium, has been isolated and characterized. The enzyme is composed of three subunits. A high molecular mass subunit (83 500 Da) is proposed to contain a molybdenum cofactor, a 27 000 Da subunit is found to be similar to the Fe-S subunit of the formate dehydrogenase from Escherichia coli and a low molecular mass subunit (14000 Da) holds a c -type heme. The presence of heme c in formate dehydrogenase is reported for the first time and is correlated to the peculiar low oxidoreduction potential of the metabolism of these strictly anaerobic bacteria. In vitro measurements have shown that a monoheme cytochrome probably acts as a physiological partner of the enzyme in the periplasm.  相似文献   

7.
A systemic study has been made of copper and heme a binding to subunits of beef heart cytochrome c oxidase. Copper and heme a were readily mobilized by ionic detergents, high ionic strengths, temperatures above 0 degrees C, thiol compounds, and gel-bound peroxides and free radicals when the subunits of the oxidase were dissociated from one another during polyacrylamide gel electrophoresis. Most subunits showed some affinity for heme a and copper under these conditions. However, in the presence of specific mixtures of ionic and nonionic detergents (e.g. 0.1% sodium dodecyl sulfate, 0.025% Triton X-100) at temperatures below 0 degrees C and in buffers of low ionic strength using 10 to 12% polyacrylamide gels preelectrophoresed for 3 days with thioglycolate, about 90% of the Cu was found on subunit II (Mr = 24,100), and heme a was found in equal amounts of subunits I (Mr = 35,800) and II. The oxidized-reduced and reduced-CO absorption spectra of these subunits resembled those of cytochrome c oxidase. It appears probable that in the native enzyme, subunit I contains heme a and subunit II contains copper and heme a. A relationship of mammalian cytochrome c oxidase to the two-subunit microbial cytochrome oxidase systems appears to exist.  相似文献   

8.
Cytochrome c oxidase is a respiratory enzyme catalysing the energy-conserving reduction of molecular oxygen to water. The crystal structure of the ba(3)-cytochrome c oxidase from Thermus thermophilus has been determined to 2.4 A resolution using multiple anomalous dispersion (MAD) phasing and led to the discovery of a novel subunit IIa. A structure-based sequence alignment of this phylogenetically very distant oxidase with the other structurally known cytochrome oxidases leads to the identification of sequence motifs and residues that seem to be indispensable for the function of the haem copper oxidases, e.g. a new electron transfer pathway leading directly from Cu(A) to Cu(B). Specific features of the ba(3)-oxidase include an extended oxygen input channel, which leads directly to the active site, the presence of only one oxygen atom (O(2-), OH(-) or H(2)O) as bridging ligand at the active site and the mainly hydrophobic character of the interactions that stabilize the electron transfer complex between this oxidase and its substrate cytochrome c. New aspects of the proton pumping mechanism could be identified.  相似文献   

9.
In a hyperthermophilic bacterium, Aquifex aeolicus, leucyl-tRNA synthetase (LeuRS) consists of two non-identical polypeptide subunits (alpha and beta), different from the canonical LeuRS, which has a single polypeptide chain. By PCR, using genome DNA of A. aeolicus as a template, genes encoding the alpha and beta subunits were amplified and cloned in Escherichia coli. The alpha subunit could not be expressed stably in vivo, whereas the beta subunit was overproduced and purified by a simple procedure. The beta subunit was inactive in catalysis but was able to bind tRNA(Leu). Interestingly, the heterodimer alphabeta-LeuRS could be overproduced in E. coli cells containing both genes and was purified to 95% homogeneity as a hybrid dimer. The kinetics of A. aeolicus LeuRS in pre-steady and steady states and cross-recognition of LeuRS and tRNA(Leu) from A. aeolicus and E. coli were studied. Magnesium concentration, pH value, and temperature aminoacylation optima were determined to be 12 mm, 7.8, and 70 degrees C, respectively. Under optimal conditions, A. aeolicus alphabeta-LeuRS is stable up to 65 degrees C.  相似文献   

10.
Human cytochrome c oxidase was isolated in an active form from heart and from skeletal muscle by a fast, small-scale isolation method. The procedure involves differential solubilisation of the oxidase from mitochondrial fragments by laurylmaltoside and KCl, followed by size-exclusion high-performance liquid chromatography. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate showed differences between the subunit VI region of cytochrome c oxidases from human heart and skeletal muscle, suggesting different isoenzyme forms in the two organs. This finding might be of importance in explaining mitochondrial myopathy which shows a deficiency of cytochrome c oxidase in skeletal muscle only. In SDS polyacrylamide gel electrophoresis most human cytochrome c oxidase subunits migrated differently from their bovine counterparts. However, the position of subunits III and IV was the same in the human and in the bovine enzymes. The much higher mobility of human cytochrome c oxidase subunit II is explained by a greater hydrophobicity of this polypeptide than of that of the subunit II of the bovine enzyme.  相似文献   

11.
Aquifex aeolicus is the hyperthermophilic bacterium known, with growth-temperature maxima near 95 degrees C. The cel8Y gene, encoding a thermostable endoglucanase (Cel8Y) from Aquifex aeolicus VF5, was cloned into a vector for expression and expressed in Escherichia coli XL1-Blue. A clone of 1.7 kb fragment containing endoglucanase activity, designated pKYCY100, was sequenced and found to contain an ORF of 978 bp encoding a protein of 325 amino acid residues, with a calculated molecular mass of 38,831 Da. This endoglucanase was designated cel8Y gene. The endoglucanase has an 18-amino-acid signal peptide but not cellulose-binding domain. The endoglucanase of A. aeolicus VF5 had significant amino acid sequence similarities with endoglucanases from glycosyl hydrolase family 8. The predicted amino acid sequence of the Cel8Y protein was similar to that of CMCase of Cellulomonas uda, BcsC of Escherichia coli, CelY of Erwinia chrysanthemi, and CMCase of Acetobacter xylinum. The molecular mass of Cel8Y was calculated to be 36,750 Da, which is consistent with the value obtained from result of CMC-SDS-PAGE of the purified enzyme. Cel8Y was thermostable, exhibiting maximal activity at 80 degrees C and pH optima of 7.0 and with half-lives of 2 h at 100 degrees C, 4 h at 90 degrees C.  相似文献   

12.
Eukaryotic cytochrome oxidases are composed of up to 13 subunits, of which three, subunits 1, 2 and 3, are mitochondrially encoded. In this study, yeast mutants were used to investigate the role of subunits 1 and 3 domains on the enzyme assembly. Mutation S203L in subunit 3 which abolished the respiratory growth, decreased cytochrome oxidase content, as measured by optical spectroscopy and immunodetection. Secondary mutations in subunits 1 and 3 restored (partly) the enzyme level. Two reversions reintroduced residues with a hydroxyl group at the primary mutation site (S203T) or in a subunit 3 transmembrane helix close to subunit 1 (G104S). These residues may be involved in hydrogen bonding which strengthen subunits 1-3 interaction. Two other reversions (A224V and Q137K) are located in P-side loops in subunit 1, which may be involved in the enzyme assembly. A mutation in residue A224 has been reported in a family presenting with encephalomyopathy. Surprisingly, the introduction of the 'human' mutation A224S and of a more drastic change A224F had no effect on the yeast enzyme. This might be explained by differences in local folding in the two enzymes.  相似文献   

13.
The respiratory chain of the thermohalophilic bacterium Rhodothermus marinus contains an oxygen reductase, which uses HiPIP (high potential iron-sulfur protein) as an electron donor. The structural genes encoding the four subunits of this HiPIP:oxygen oxidoreductase were cloned and sequenced. The genes for subunits II, I, III, and IV (named rcoxA to rcoxD) are found in this order and seemed to be organized in an operon of at least five genes with a terminator structure a few nucleotides downstream of rcoxD. Examination of the amino acid sequence of the Rcox subunits shows that the subunits of the R. marinus enzyme have homology to the corresponding subunits of oxidases belonging to the superfamily of heme-copper oxidases. RcoxB has the conserved histidines involved in binding the binuclear center and the low-spin heme. All of the residues proposed to be involved in proton transfer channels are conserved, with the exception of the key glutamate residue of the D-channel (E(278), Paracoccus denitrificans numbering). Analysis of the homology-derived structural model of subunit I shows that the phenol group of a tyrosine (Y) residue and the hydroxyl group of the following serine (S) may functionally substitute the glutamate carboxyl in proton transfer. RcoxA has an additional sequence for heme C binding, after the Cu(A) domain, that is characteristic of caa(3) oxidases belonging to the superfamily. Homology modeling of the structure of this cytochrome domain of subunit II shows no marked electrostatic character, especially around the heme edge region, suggesting that the interaction with a redox partner is not of an electrostatic nature. This observation is analyzed in relation to the electron donor for this caa(3) oxidase, the HiPIP. In conclusion, it is shown that an oxidase, which uses an iron-sulfur protein as an electron donor, is structurally related to the caa(3) class of heme-copper cytochrome c oxidases. The data are discussed in the framework of the evolution of oxidases within the superfamily of heme-copper oxidases.  相似文献   

14.
The cytochrome o complex is a bo-type ubiquinol oxidase in the aerobic respiratory chain of Escherichia coli. This complex has a close structural and functional relationship with the eukaryotic and prokaryotic aa3-type cytochrome c oxidases. The specific activity, subunit composition, and metal content of the purified cytochrome o complex are not consistent for different preparative protocols reported in the literature. This paper presents a relatively simple preparation of the enzyme starting with a strain of Escherichia coli which overproduces the oxidase. The pure enzyme contains four subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Partial amino acid sequence data confirm the identities of subunit I, II, and III from the SDS-PAGE analysis as the cyoB, cyoA, and cyoC gene products, respectively. A slight modification of the purification protocol yields an oxidase preparation that contains a possible fifth subunit which may be the cyoE gene product. The pure four-subunit enzyme contains 2 equivs of iron but only 1 equiv of copper. There is no electron paramagnetic resonance detectable copper in the purified enzyme. Hence, the equivalent of CuA of the aa3-type cytochrome c oxidases is absent in this quinol oxidase. There is also no zinc in the purified quinol oxidase. Finally, monoclonal antibodies are reported that interact with subunit II. One of these monoclonals inhibits the quinol oxidase activity of the detergent-solubilized, purified oxidase. Hence, although subunit II does not contain CuA and does not interact with cytochrome c, it still must have an important function in the bo-type ubiquinol oxidase.  相似文献   

15.
Hucke O  Schiltz E  Drews G  Labahn A 《FEBS letters》2003,535(1-3):166-170
Most of the bacterial photosynthetic reaction centres known to date contain a cytochrome subunit with four covalently bound haem groups. In the case of Blastochloris viridis, this reaction centre subunit is anchored in the membrane by a lipid molecule covalently attached to the cysteine which forms the N-terminus of the mature protein after processing by a signal peptidase. We show that posttranslational N-terminal cleavage of the cytochrome subunit does not occur in the aerobic photosynthetic bacterium Roseobacter denitrificans. From sequence analysis of the resulting elongated N-terminus it follows that a transmembrane helix is anchoring the reaction centre-bound cytochrome in the membrane. Comparative sequence analysis strongly suggests that all cytochrome subunits lacking the lipid coupling cysteine share this structural feature. Comparison of the N-terminal segment of the cytochrome subunit of Roseobacter denitrificans with the sequences of the PufX proteins from Rhodobacter sphaeroides and Rhodobacter capsulatus suggests a phylogenetic relation.  相似文献   

16.
Zhao MW  Hao R  Chen JF  Martin F  Eriani G  Wang ED 《Biochemistry》2003,42(25):7694-7700
Aquifex aeolicus alphabeta-LeuRS is the only known heterodimeric LeuRS, while Escherichia coli LeuRS is a canonical monomeric enzyme. By using the genes encoding A. aeolicus and E. coli LeuRS as PCR templates, the genes encoding the alpha and beta subunits from A. aeolicus alphabeta-LeuRS and the equivalent amino- and carboxy-terminal parts of E. coli LeuRS (identified as alpha' and beta') were amplified and recombined using suitable plasmids. These recombinant plasmids were transformed or cotransformed into E. coli to produce five monomeric and five heterodimeric LeuRS mutants. Seven of these were successfully overexpressed in vivo and purified, while three dimeric mutants with the beta' part of E. coli LeuRS were not successfully expressed. The seven purified mutants catalyzed amino acid activation, although several exhibited reduced aminoacylation properties. Removal of the last 36 residues of the alpha subunit of the A. aeolicus enzyme was determined to be deleterious for tRNA charging. Indeed, subunit exchange showed that the cross-species-specific recognition of A. aeolicus tRNA(Leu) occurs at the alpha subunit. None of the mixed E. coli-A. aeolicus enzymes were as thermostable as the native alphabeta-LeuRS. However, the fusion of the two alpha and beta peptides from A. aeolicus as a single chain analogous to canonical LeuRS resulted in a product more resistant to heat denaturation than the original enzyme.  相似文献   

17.
N Sone  T Kosako 《The EMBO journal》1986,5(7):1515-1519
Cytochrome c oxidases, purified from bovine heart and the thermophilic bacterium PS3, were irradiated with a high-energy electron beam. The proton transport activities of both preparations and their electron transfer activities decreased as single exponential functions of the radiation dosage. Applying the target theory with alkaline phosphatase as an internal standard, the following functional molecular weights were obtained for cytochrome c oxidation and H+ pumping: 63-73 kd and 160-220 kd, respectively, for the bovine enzyme, and 80-100 kd and 190-230 kd for the PS3 enzyme. The results suggest that a dimer structure is necessary for H+ pumping, while a core part of monomer (presumably the largest two subunits, i.e. subunits I and II) is sufficient for cytochrome c oxidation.  相似文献   

18.
A novel scenario for the evolution of haem-copper oxygen reductases   总被引:1,自引:0,他引:1  
The increasing sequence information on oxygen reductases of the haem-copper superfamily, together with the available three-dimensional structures, allows a clear identification of their common, functionally important features. Taking into consideration both the overall amino acid sequences of the core subunits and key residues involved in proton transfer, a novel hypothesis for the molecular evolution of these enzymes is proposed. Three main families of oxygen reductases are identified on the basis of common features of the core subunits, constituting three lines of evolution: (i) type A (mitochondrial-like oxidases), (ii) type B (ba3-like oxidases) and (iii) type C (cbb3-type oxidases). The first group can be further divided into two subfamilies, according to the helix VI residues at the hydrophobic end of one of the proton pathways (the so-called D-channel): (i) type A1, comprising the enzymes with a glutamate residue in the motif -XGHPEV-, and (ii) type A2, enzymes having instead a tyrosine and a serine in the alternative motif -YSHPXV-. This second subfamily of oxidases is shown to be ancestor to the one containing the glutamate residue, which in the Bacteria domain is only present in oxidases from Gram-positive or purple bacteria. It is further proposed that the Archaea domain acquired terminal oxidases by gene transfer from the Gram-positive bacteria, implying that these enzymes were not present in the last common ancestor before the divergence between Archaea and Bacteria. In fact, most oxidases from archaea have a higher amino acid sequence identity and similarity with those from bacteria, mainly from the Gram-positive group, than with oxidases from other archaea. Finally, a possible relation between the dihaemic subunit (FixP) of the cbb3 oxidases and subunit II of caa3 oxidases is discussed. As the families of haem-copper oxidases can also be identified by their subunit II, a parallel evolution of subunits I and II is suggested.  相似文献   

19.
The cytochrome o complex is the predominant terminal oxidase in the aerobic respiratory chain of Escherichia coli when the bacteria are grown under conditions of high aeration. The oxidase is a ubiquinol oxidase and reduces molecular oxygen to water. Electron transport through the enzyme is coupled to the generation of a protonmotive force. The purified cytochrome o complex contains four or five subunits, two protoheme IX (heme b) prosthetic groups, plus at least one Cu. The subunits are all encoded by the cyo operon. Sequence comparisons show that the cytochrome o complex is closely related to the aa3-type cytochrome c oxidase family. Gene fusions have been used to define the topology of each of the gene products. Subunits I, II, III and IV are proposed to have 15, 2, 5 and 3 transmembrane spans, respectively. The fifth gene product (cyoE) encodes a protein with 7 membrane spanning segments, and this may also be a subunit of this enzyme. Fourier transform infrared spectroscopy has been used to monitor CO bound in the active site where oxygen is reduced. These data provide definitive proof that the cytochrome o complex has a heme-copper binuclear center, similar to that present in the aa3-type cytochrome c oxidases. Site-directed mutagenesis is being utilized to define which amino acids are ligands to the heme iron and copper prosthetic groups.  相似文献   

20.
To probe the location of the quinol oxidation site and physical interactions for inter-subunit electron transfer, we constructed and characterized two chimeric oxidases in which subunit II (CyoA) of cytochrome bo-type ubiquinol oxidase from Escherichia coli was replaced with the counterpart (CaaA) of caa(3)-type cytochrome c oxidase from thermophilic Bacillus PS3. In pHNchi5, the C-terminal hydrophilic domain except a connecting region as to transmembrane helix II of CyoA was replaced with the counterpart of CaaA, which carries the Cu(A) site and cytochrome c domain. The resultant chimeric oxidase was detected immunochemically and spectroscopically, and the turnover numbers for Q(1)H(2) (ubiquinol-1) and TMPD (N,N, N',N'-tetramethyl-p-phenylenediamine) oxidation were 28 and 8.5 s(-1), respectively. In pHNchi6, the chimeric oxidase was designed to carry a minimal region of the cupredoxin fold containing all the Cu(A) ligands, and showed enzymatic activities of 65 and 5.1 s(-1), and an expression level better than that of pHNchi5. Kinetic analyses proved that the apparent lower turnover of the chimeric enzyme by pHNchi6 was due to the higher K(m) of the enzyme for Q(1)H(2) (220 microM) than that of cytochrome bo (48 microM), while in the enzyme by pHNchi5, both substrate-binding and internal electron transfer were perturbed. These results suggest that the connecting region and the C-terminal alpha(1)-alpha(2)-beta(11)-alpha(3) domain of CyoA are involved in the quinol oxidation and/or physical interactions for inter-subunit electron transfer, supporting our previous proposal [Sato-Watanabe, M., Mogi, T., Miyoshi, H., and Anraku, Y. (1998) Biochemistry 37, 12744-12752]. The close relationship of E. coli quinol oxidases to cytochrome c oxidase of Gram-positive bacteria like Bacillus was also indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号