首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of 25-hydroxyvitamin D3-1-hydroxylase in vivo   总被引:16,自引:0,他引:16  
  相似文献   

2.
3.
4.
Vitamin D3-deficient chick kidney microsomes invitro metabolize 25-hydroxy-[26(27)-methyl-3H]-vitamin D3 to yet structurally unidentified polar metabolites previously designated MIC-I and MIC-II. Kidney microsomes of vitamin D3-repleted chicks could not be demonstrated to produce these metabolites when 3H was the radioactive isotope in positions C-26 and C-27 of the substrate. However, when 25-hydroxy-[26,27-14C]-vitamin D3 was the radioactive substrate, MIC-I and MIC-II production was independent of the vitamin D3 status of the chicks. These results suggest that under conditions of vitamin D3-sufficiency, there is augmented sequential kidney metabolism of 25-hydroxyvitamin D3 to products with modified side-chains involving C-26 and/or C-27. It is possible that this metabolism is responsible for the regulation of kidney cellular concentrations of 25-hydroxyvitamin D3.  相似文献   

5.
The biological activity of 24,24-difluoro-25-hydroxyvitamin D3 was assessed using elevation of serum phosphorus and healing of rickets of vitamin D-deficient rats. Various levels of 24,24-difluoro-25-hydroxyvitamin D3 and 25-hydroxyvitamin D3 were administered daily for 2 weeks in the dose range of 6.5 to 3250 pmol after feeding rats a low phosphorus, vitamin D-deficient diet for 3 weeks. Vitamin D3 was concurrently tested at dose levels of 650 and 3250 pmol. 24,24-Difluoro-25-hydroxyvitamin D3 is approximately equipotent with 25-hydroxyvitamin D3 in stimulation of growth, mineralization of rachitic bone, and elevation of serum inorganic phosphorus. Radiological manifestations of rickets were also equally improved by 24,24-difluoro-25-hydroxyvitamin D3 and 25-hydroxyvitamin D3. Compared with vitamin D3, these compounds were approximately 5 to 10 times more active in mineralization using rats on a low phosphorus, vitamin D-deficient diet. The functional role, if any, for 24-hydroxylated vitamin D compounds, such as 24,25-dihydroxyvitamin D3, therefore remains obscure. It appears that vitamin D compounds that cannot be 24-hydroxylated evoke no disorder in bone mineralization.  相似文献   

6.
Extraction, lipid-reduction, and chromatographic methods suitable for the resolution and subsequent quantitation of vitamin D2, vitamin D3, 25-hydroxyvitamin D2, and 25-hydroxy-vitamin D3 from human milk are described. This procedure utilizes a methanol:methylene chloride extraction, precipitation of unwanted lipids with cold methanol and ether, backwash with alkaline buffer, silica Sep-Pak preparative chromatography, normal- and reverse-phase high-performance liquid chromatography with final quantitation of the antirachitic sterols by competitive protein binding assay. The described assay was used to determine these antirachitic sterols in milk from women receiving various supplements of vitamin D or undergoing ultraviolet phototherapy.  相似文献   

7.
An antibody was prepared from serum of rabbits injected with a pure inhibitor protein obtained from rat serum for chick renal 25-hydroxyvitamin D3-1α-hydroxylase. The antibody was separated from the endogenous inhibitor in rabbit serum. The antibody shows a single precipitin line with the rat serum antigen and with crude calf serum. Furthermore, the antibody removes the 4.0 S 25-hydroxyvitamin D3 binding protein from rat serum. The removal of the 25-hydroxyvitamin D3 binding protein from rat serum with antibody brings about a proportionate removal of inhibitor of the 25-hydroxyvitamin D3-1α-hydroxylase. The pure inhibitor binds 25-hydroxyvitamin D3, as demonstrated by sucrose density gradient sedimentation, and shows specificity of binding identical to the serum transport globulin for 25-hydroxyvitamin D3. Thus, the previously reported inhibitor of the 25-hydroxyvitamin D3-1α-hydroxylase in rat preparations is the serum 25-hydroxyvitamin D3 transport protein or some derivative thereof. The antibody added to rat renal mitochondrial preparations does increase the activity of the 1- and 24-hydroxylases slightly but not markedly.  相似文献   

8.
Concomitant intravenous administration of 25-hydroxycholecalciferol and [3H] vitamin D3 to vitamin D-depleted rats did not affect the conversion of [3H] vitamin D3 to 25-OH-[3H] vitamin D3 as indicated by a serum 25-OH-[3H] vitamin D3 to content at 3 and 24 h identical to those observed in animals receiving [3H] vitamin D3 alone. Similarly, pre-dosing with 25-OH vitamin D3 24 h earlier did not affect the conversion. Co-administration to vitamin D depleted rats of vitamin D2 or D3, at 200-fold higher doses than a control group receiving tracer [3H] vitamin D3 alone, resulted in serum 25-OH vitamin D levels that were 15-20 fold higher than the control, indicating a similar metabolic fate for synthetic and natural vitamin D in rats and the ability of increased substrate to overwhelm hepatic constraints on 25-OH vitamin D production. Following intravenous administration of 25-OH-[3H] vitamin D3 to vitamin D depleted rats, hepatic 3H content decreased in parallel with serum radioactivity. Hepatic accumulation of intravenously administered vitamin D3 ([14C] vitamin D3) alone or with 25-OH-[3H] vitamin D3, by vitamin D-depleted rats revealed a marked preference for vitamin D3; the hepatic accumulation of [14C] vitamin D3 increased to 35% of the dose by 45 min, at which time 25-OH-[3H] vitamin D3 hepatic content was 7-fold less, and decreasing. Chromatography of extracts of hepatic subcellular fractions revealed more [14C] vitamin D3 than 25-OH-[3H] vitamin D3 in the microsomes, the reported site of calciferol 25-hydroxylase. Circulating 25-OH vitamin D, therefore, has comparatively minimal potential for hepatic accumulation. Product inhibition of the calciferol 25-hydroxylase must, therefore, result from recently synthesized hepatic 25-OH vitamin D, and is not affected by exogenous 25-OH vitamin D3.  相似文献   

9.
A metabolite of vitamin D has been isolated in pure form from incubation of 25-hydroxyvitamin D3 with embryonic chick calvarial cells that had been grown on Cytodex 1 microcarrier beads. The isolation involved dichloromethane extraction of the cells and incubation medium, followed by Sephadex LH-20 column chromatography and high-performance liquid chromatography of the extract. The metabolite was identified as 1 alpha,25-dihydroxyvitamin D3 by means of ultraviolet absorption spectroscopy, mass spectrometry, and sensitivity to oxidation by periodate. This metabolite was not produced by cell-free medium or by cells from embryonic chick liver, skin, or heart. In conclusion, (1) kidney cells are not unique in having 25-hydroxyvitamin D3:1 alpha-hydroxylase activity as previously believed and (2) vitamin D target tissues such as the skeleton may play a direct role in mediating the metabolism of 25-hydroxyvitamin D3 to 1 alpha,25-dihydroxyvitamin D3, a vitamin D metabolite active at those sites.  相似文献   

10.
Vitamin D3-deficient chick kidney microsomes in vitro metabolize 25-hydroxyvitamin D3 to two polar metabolites by a pathway which may involve side-chain modification. Molecular oxygen and a source of reduced nicotinamide adenine dinucleotide phosphate are required for this metabolism. Kidney cytosol obtained from deficient chicks or kidney microsomes of vitamin D3-repleted chicks do not metabolize 25-hydroxyvitamin D3. The two products are tentatively designated MIC-I and MIC-II.  相似文献   

11.
3-Deoxy-3-azido-25-hydroxyvitamin D3 was covalently incorporated in the 25-hydroxyvitamin D3 binding site of purified human plasma vitamin D binding protein. Competition experiments showed that 3-deoxy-3-azido-25-hydroxyvitamin D3 and 25-hydroxyvitamin D3 bind at the same site on the protein. Tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was synthesized from tritiated 25-hydroxyvitamin D3, retaining the high specific activity of the parent compound. The tritiated azido label bound reversibly to human vitamin D binding protein in the dark and covalently to human vitamin D binding protein after exposure to ultraviolet light. Reversible binding of tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was compared to tritiated 25-hydroxyvitamin D3 binding to human vitamin D binding protein. Scatchard analysis of the data indicated equivalent maximum density binding sites with a KD,app of 0.21 nM for 25-hydroxyvitamin D3 and a KD,app of 1.3 nM for the azido derivative. Covalent binding was observed only after exposure to ultraviolet irradiation, with an average of 3% of the reversibly bound label becoming covalently bound to vitamin D binding protein. The covalent binding was reduced 70-80% when 25-hydroxyvitamin D3 was present, indicating strong covalent binding at the vitamin D binding site of the protein. When tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was incubated with human plasma in the absence and presence of 25-hydroxyvitamin D3, 12% of the azido derivative was reversibly bound to vitamin D binding protein. After ultraviolet irradiation, four plasma proteins covalently bound the azido label, but vitamin D binding protein was the only protein of the four that was unlabeled in the presence of 25-hydroxyvitamin D3.  相似文献   

12.
Plasma 25-(OH)D3 concentrations following an intra-portal injection of 100 micrograms Kg-1 of D3 or 100 micrograms Kg-1 of 25-(OH)D3 was studied in D depleted rats fed ethanol diet and pair-fed controls. When challenged with D3, the rats under ethanol feeding were unable to increase their plasma 25(OH)D3 concentrations above those observed in controls. Plasma 25(OH)D3 concentrations following 25(OH)D3 administration were however lowered by the ethanol treatment 3 and 96 hr after 25(OH)D3 administration (p less than 0.05). These results suggest that animals chronically exposed to ethanol have an unaltered plasma 25(OH)D3 response following a pharmacological dose of D3 while the drug treatment contributes to an accelerated plasma 25(OH)D3 disappearance following 25(OH)D3.The former observations also suggest that D3 does not seem to be a high affinity substrate for the ethanol-induced cytochrome P-450.  相似文献   

13.
The binding of 25-hydroxy-[26,27-3H]vitamin D3 and 1,25-dihydroxy-[26,27-3H]vitamin D3 to the cytosol of intestinal mucosa of chicks and rats has been studied by sucrose gradient analysis. The cytosol from chick mucosa showed variable binding of 1,25-dihydroxyvitamin D3 to a 3.0S macromolecule which has high affinity and low capacity for this metabolite. However, when the mucosa was washed extensively before homogenization, a 3.7S macromolecule was consistently observed which showed considerable specificity and affinity for 1,25-dihydroxyvitamin D3. Although 3.7S binders for 1,25-dihydroxyvitamin D3 could also be located in other organs, competition experiments with excess nonradioactive 1,25-dihydroxyvitamin D3 suggested that they were not identical to the 3.7S macromolecule from intestinal mucosal cytosol. As the 3.7S macromolecule was allowed to stand at 4 °C with bound 1,25-dihydroxy-[3H]vitamin D3, the 1,25-dihydroxy-[3H]vitamin D3 became increasingly resistant to displacement by non-radioactive 1,25-dihydroxyvitamin D3. The 1,25-dihydroxy-[3H]vitamin D3 remained unchanged and easily extractable with lipid solvents through this change, making unlikely the establishment of a covalent bond. Unlike the chick, mucosa from rats yielded cytosol in which no specific binding of 1,25-dihydroxy-[3H]vitamin D3 was detected. Instead, a 5-6S macromolecule which binds both 1,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3 was found. This protein which was also found in chick mucosa shows preferential binding for 25-hydroxyvitamin D3. It could be removed by washing the mucosa with buffer prior to homogenization which suggests that it may not be a cytosolic protein. Although the 3.7S protein from chick mucosa has properties consistent with its possible role as a receptor, the 5-6S macromolecule does not appear to have “receptor”-like properties.  相似文献   

14.
Four new in vivo metabolites of vitamin D3 were isolated from the blood plasma of chicks given large doses of vitamin D3. The metabolites were isolated by methanol-chloroform extraction and a series of chromatographic procedures. By use of mass spectrometry, ultraviolet absorption spectrophotometry, and specific chemical reactions, the metabolites were identified as 23,24,25-trihydroxyvitamin D3, 24,25,26-trihydroxyvitamin D3, 24-keto-25-hydroxyvitamin D3 and 23-dehydro-25-hydroxyvitamin D3.  相似文献   

15.
Recently, it has been reported that 25-hydroxyvitamin D3-1alpha-hydroxylase [1alpha(OH)ase, CYP27B1], required to convert non-toxic 25-hyxdroxyvitamin D3 [25(OH)D(3)] to its active metabolite [1alpha,25(OH)(2)D(3)], is present in the epithelial cells of the human colon. In the present study, the potential chemoprotective role of 25(OH)D(3) was evaluated for colon cancer using the HT-29, human colon cancer cell line. Colon cancer cells were treated with 25(OH)D(3) (500nM or 1muM), 1alpha,25(OH)(2)D(3) (500nM), cholecalciferol (D3, 1muM) or vehicle and cell number determined at days 2 and 5 post-treatment. Results showed that both 25(OH)D(3) and 1alpha,25(OH)(2)D(3) induced dose- and time-dependent anti-proliferative effects on the HT-29 cells, with maximum inhibition noted at day 5. Western blot analyses revealed an up-regulation of VDR and 1alpha(OH)ase expression following 24h of treatment with 25(OH)D(3), and 1alpha,25(OH)(2)D(3). These results are consistent with the expression of VDR and 1alpha(OH)ase in samples of normal colonic tissue, aberrant crypt foci (ACFs) and colon adenocarcinomas. The VDR expression was sequentially increased from normal to pre-cancerous lesions to well-differentiated tumors and then decreased in poorly differentiated tumors. Expression of 1alpha(OH)ase was equally expressed in normal, pre-cancerous lesions and malignant human colon tissues. The increased expression of 1alpha(OH)ase in colon cancer cells treated with the pro-hormone and its anti-proliferative effects, suggest that 25(OH)D(3) may offer possible therapeutic and chemopreventive option in colon cancer.  相似文献   

16.
A primary confluent culture of epithelial cells from rat kidney has been developed. These cells possess a 3.2–3.4 S high-affinity, low-capacity binding protein for 1,25-dihydroxyvitamin D3. They metabolize 25-hydroxyvitamin D3 to at least five metabolites. Two have been identified as 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3. Two others have been identified by means of physical data and cochromatography as trans 19-nor-10-oxo-25-hydroxyvitamin D3 and the other as its cis isomer. These two “metabolites” have not been observed in vivo, but one of them (cis) comigrates with 1,25-dihydroxyvitamin D3 on straight-phase high-performance liquid chromatography. Thus, mere cochromatography on high-performance liquid chromatography is not sufficient to identify critical vitamin D metabolites.  相似文献   

17.
Stimulation of 25-hydroxyvitamin D3-1alpha-hydroxylase by phosphate depletion.   总被引:15,自引:0,他引:15  
The ability of low phosphorus diets to stimulate the activity of the 25-hydroxyvitamin D3-1alpha-hydroxylase was tested in the chick. Feeding low phosphorus diets for 2 weeks resulted in a marked increase in enzyme activity relative to chicks fed a normal phosphorus diet. Stimulation of the 25-hydroxyvitamin D3-1alpha-hydroxylase activity by low phosphorus diets, however, was not as great as that observed with a low calcium diet. The low phosphorus and low calcium diets probably results from increased 1,25-dihydroxyvitamin D3 synthesis, whereas the stimulation by phosphate deprivation is only partly the result of increased 1,25-dihydroxyvitamin D3 production.  相似文献   

18.
Homogenates of kidney from laying Japanese quail incubated in vitro with 25-hydroxy-[26,27-3H] vitamin D3 produce more 1,25-dihydroxy-[26,27-3H]vitamin D3 than do homogenates of kidney from mature nonlaying females or males maintained on the same diet and under identical conditions. Instead, the homogenates from male quail or nonlaying female quail convert 25-hydroxyvitamin D3 to 24,25-dihydroxyvitamin D3. The administration of 5 mg of estradiol to mature male quail 24 h prior to sacrifice suppressed the 25-hydroxyvitamin D3-24-hydroxylase and markedly stimulated 25-hydroxyvitamin D3-1-hydroxylase. The administration of estradiol to male quail caused hypercalcemia, which responded more slowly than did the 1-hydroxylase. As little as 0.1 mg of estradiol/quail was found effective in stimulating the 1-hydroxylase and suppressing the 24-hydroxylase. Other hormones such as follicle stimulating hormone (FSH), cortisone, testosterone, and progesterone, even at high dose levels, produced little or no change in the 25-hydroxyvitamin D3-1-hydroxylase. Testosterone did, however, suppress the 25-hydroxyvitamin D3-24-hydroxylase. The stimulation of the 25-hydroxyvitamin D3-1-hydroxylase by parathyroid hormone was of a smaller magnitude than that of the estradiol, and the effects of the two hormones were additive, suggesting that they function by a different mechanism.  相似文献   

19.
Estrogens and androgens are proposed to play a role in the pathogenesis of prostate cancer. The effective metabolites, estradiol and 5alpha-dihydrotestosterone are produced from testosterone by aromatase and 5alpha-reductase, respectively. Metabolites of vitamin D have shown to inhibit the growth of prostate cancer cells. The aim of the present study was to verify whether 25-hydroxyvitamin D(3) (25OHD(3)), 1alpha,25-dihydroxyvitamin D(3) [1alpha,25-(OH)(2)D(3)], dexamethasone, and progesterone regulate the expression of aromatase and 5alpha-reductase in human prostate cancer cells. LNCaP and PC3 cells were treated with 25OHD(3), 1alpha,25-(OH)(2)D(3), dexamethasone, or progesterone. Aromatase and 5alpha-reductase mRNA was quantified by real-time RT-PCR and aromatase enzyme activity was measured by the [(3)H] water assay. Aromatase enzyme activity in LNCaP and PC3 cells was increased by both 10nM dexamethasone, 1-100 nM 1alpha,25-(OH)(2)D(3) and 100 nM-10 microM progesterone. The induction was enhanced when hormones were used synergistically. Real-time RT-PCR analysis showed no regulation of the expression of aromatase mRNA by any steroids tested in either LNCaP or PC3 cells. The expression of 5alpha-reductase type I mRNA was not regulated by 1alpha,25-(OH)(2)D(3) and no expression of 5alpha-reductase type II was detected in LNCaP.  相似文献   

20.
The first practical fluorometric assay of plasma 25-hydroxyvitamin D3 (25-OH-D3) and 24R,25-dihydroxyvitamin D3 (24,25-(OH)2D3) is described. The method uses a highly fluorescent dienophile, 4-[2-(6,7-dimethoxy-4-methyl-3-oxo-3,4-dihydroquinoxalyl)ethyl]-1, 2,4- triazoline-3,5-dione (DMEQ-TAD), to fluorescence-label vitamin D. Vitamin D metabolites were roughly purified with a short cartridge column followed by HPLC, labeled with DMEQ-TAD, and the product was analyzed on HPLC. In the assay of 25-OH-D3 the new fluorometric method was compared with the HPLC-uv method and was confirmed to be as accurate and reliable (CV, 4-5%) as the HPLC-uv method. Plasma 24,25-(OH)2D3 was accurately assayed by the HPLC-FL method, where the standard addition method was successfully used to calculate the overall recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号