首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Histone H2A variants generate diversity in chromatin structure and functions, as nucleosomes containing variant H2A histones have altered physical, chemical, and biological properties. H2A.Z is an evolutionarily ancient and highly conserved H2A variant that regulates processes ranging from gene expression to the DNA damage response. Here we find that the unstructured portion of the C-terminal tail of H2A.Z is required for the normal functions of this histone variant in budding yeast. We have also identified a novel splice isoform of the human H2A.Z-2 gene that encodes a C-terminally truncated H2A.Z protein that is similar to the truncation mutants we identified in yeast. The short forms of H2A.Z in both yeast and human cells are more loosely associated with chromatin than the full-length proteins, indicating a conserved function for the H2A.Z C-terminal tail in regulating the association of H2A.Z with nucleosomes.  相似文献   

2.
Phosphorylation of the C-terminal end of histone H2A.X is the most characterized histone post-translational modification in DNA double-stranded breaks (DSB). DNA-dependent protein kinase (DNA-PK) is one of the three phosphatidylinositol 3 kinase-like family of kinase members that is known to phosphorylate histone H2A.X during DNA DSB repair. There is a growing body of evidence supporting a role for histone acetylation in DNA DSB repair, but the mechanism or the causative relation remains largely unknown. Using bacterially expressed recombinant mutants and stably and transiently transfected cell lines, we find that DNA-PK can phosphorylate Thr-136 in addition to Ser-139 both in vitro and in vivo. Furthermore, the phosphorylation reaction is not inhibited by the presence of H1, which in itself is a substrate of the reaction. We also show that, in contrast to previous reports, the ability of the enzyme to phosphorylate these residues is not affected by the extent of acetylation of the core histones. In vitro assembled nucleosomes and HeLa S3 native oligonucleosomes consisting of non-acetylated and acetylated histones are equally phosphorylated by DNA-PK. We demonstrate that the apparent differences in the extent of phosphorylation previously observed can be accounted for by the differential chromatin solubility under the MgCl2 concentrations required for the phosphorylation reaction in vitro. Finally, we show that although H2A.X does not affect nucleosome conformation, it has a de-stabilizing effect that is enhanced by the DNA-PK-mediated phosphorylation and results in an impaired histone H1 binding.  相似文献   

3.
4.
5.
The incorporation of histone variant H2A.Z into nucleosomes plays essential roles in regulating chromatin structure and gene expression. A multisubunit complex containing chromatin remodeling protein Swr1 is responsible for the deposition of H2A.Z in budding yeast and mammals. Here, we show that the JmjC domain protein Msc1 is a novel component of the fission yeast Swr1 complex and is required for Swr1-mediated incorporation of H2A.Z into nucleosomes at gene promoters. Loss of Msc1, Swr1, or H2A.Z results in loss of silencing at centromeres and defective chromosome segregation, although centromeric levels of CENP-A, a centromere-specific histone H3 variant that is required for setting up the chromatin structure at centromeres, remain unchanged. Intriguingly, H2A.Z is required for the expression of another centromere protein, CENP-C, and overexpression of CENP-C rescues centromere silencing defects associated with H2A.Z loss. These results demonstrate the importance of H2A.Z and CENP-C in maintaining a silenced chromatin state at centromeres.  相似文献   

6.
Histone H3 lysine 27 (H3K27) methylation and H2A monoubiquitination (ubH2A) are two closely related histone modifications that regulate Polycomb silencing. Previous studies reported that H3K27 trimethylation (H3K27me3) rarely coexists with H3K36 di- or tri-methylation (H3K36me2/3) on the same histone H3 tails, which is partially controlled by the direct inhibition of the enzymatic activity of H3K27-specific methyltransferase PRC2. By contrast, H3K27 methylation does not affect the catalytic activity of H3K36-specific methyltransferases, suggesting other Polycomb mechanism(s) may negatively regulate the H3K36-specific methyltransferase(s). In this study, we established a simple protocol to purify milligram quantities of ubH2A from mammalian cells, which were used to reconstitute nucleosome substrates with fully ubiquitinated H2A. A number of histone methyltransferases were then tested on these nucleosome substrates. Notably, all of the H3K36-specific methyltransferases, including ASH1L, HYPB, NSD1, and NSD2 were inhibited by ubH2A, whereas the other histone methyltransferases, including PRC2, G9a, and Pr-Set7 were not affected by ubH2A. Together with previous reports, these findings collectively explain the mutual repulsion of H3K36me2/3 and Polycomb modifications.  相似文献   

7.
8.
Qin S  Jin L  Zhang J  Liu L  Ji P  Wu M  Wu J  Shi Y 《The Journal of biological chemistry》2011,286(42):36944-36955
MOZ (monocytic leukemic zinc-finger protein) and MORF (MOZ-related factor) are histone acetyltransferases important for HOX gene expression as well as embryo and postnatal development. They form complexes with other regulatory subunits through the scaffold proteins BRPF1/2/3 (bromodomain-PHD (plant homeodomain) finger proteins 1, 2, or 3). BRPF proteins have multiple domains, including two PHD fingers, for potential interactions with histones. Here we show that the first PHD finger of BRPF2 specifically recognizes the N-terminal tail of unmodified histone H3 (unH3) and report the solution structures of this PHD finger both free and in complex with the unH3 peptide. Structural analysis revealed that the unH3 peptide forms a third antiparallel β-strand that pairs with the PHD1 two-stranded antiparallel β-sheet. The binding specificity was determined primarily through the recognition of arginine 2 and lysine 4 of the unH3 by conserved aspartic acids of PHD1 and of threonine 6 of the unH3 by a conserved asparagine. Isothermal titration calorimetry and NMR assays showed that post-translational modifications such as H3R2me2as, H3T3ph, H3K4me, H3K4ac, and H3T6ph antagonized the interaction between histone H3 and PHD1. Furthermore, histone binding by PHD1 was important for BRPF2 to localize to the HOXA9 locus in vivo. PHD1 is highly conserved in yeast NuA3 and other histone acetyltransferase complexes, so the results reported here also shed light on the function and regulation of these complexes.  相似文献   

9.
Histone lysine methylation is a dynamic process that plays an important role in regulating chromatin structure and gene expression. Recent studies have identified Jhd2, a JmjC domain-containing protein, as an H3K4-specific demethylase in budding yeast. However, important questions regarding the regulation and functions of Jhd2 remain unanswered. In this study, we show that Jhd2 has intrinsic activity to remove all three states of H3K4 methylation in vivo and can dynamically associate with chromatin to modulate H3K4 methylation levels on both active and repressed genes and at the telomeric regions. We found that the plant homeodomain (PHD) finger of Jhd2 is important for its chromatin association in vivo. However, this association is not dependent on H3K4 methylation and the H3 N-terminal tail, suggesting the presence of an alternative mechanism by which Jhd2 binds nucleosomes. We also provide evidence that the JmjN domain and its interaction with the JmjC catalytic domain are important for Jhd2 function and that Not4 (an E3 ligase) monitors the structural integrity of this interdomain interaction to maintain the overall protein levels of Jhd2. We show that the S451R mutation in human SMCX (a homolog of Jhd2), which has been linked to mental retardation, and the homologous T359R mutation in Jhd2 affect the protein stability of both of these proteins. Therefore, our findings provide a mechanistic explanation for the observed defects in patients harboring this SMCX mutant and suggest the presence of a conserved pathway involving Not4 that modulates the protein stability of both yeast Jhd2 and human SMCX.  相似文献   

10.
In eukaryotic nuclei the majority of genomic DNA is believed to exist in higher order chromatin structures. Nonetheless, the nature of direct, long range nucleosome interactions that contribute to these structures is poorly understood. To determine whether these interactions are directly mediated by contacts between the histone H4 amino-terminal tail and the acidic patch of the H2A/H2B interface, as previously demonstrated for short range nucleosomal interactions, we have characterized the extent and effect of disulfide cross-linking between residues in histones contained in different strands of nucleosomal arrays. We show that in 208-12 5 S rDNA and 601-177-12 nucleosomal array systems, direct interactions between histones H4-V21C and H2A-E64C can be captured. This interaction depends on the extent of initial cross-strand association but does not require these specific residues, because interactions with residues flanking H4-V21C can also be captured. Additionally, we find that trapping H2A-H4 intra-array interactions antagonizes the ability of these arrays to undergo intermolecular self-association.  相似文献   

11.
12.
13.
H2A.F/Z histones are conserved variants that diverged from major H2A proteins early in evolution, suggesting they perform an important function distinct from major H2A proteins. Antisera specific for hv1, the H2A.F/Z variant of the ciliated protozoan Tetrahymena thermophila, cross-react with proteins from Saccharomyces cerevisiae. However, no H2A.F/Z variant has been reported in this budding yeast species. We sought to distinguish among three explanations for these observations: (i) that S. cerevisiae has an undiscovered H2A.F/Z variant, (ii) that the major S. cerevisiae H2A proteins are functionally equivalent to H2A.F/Z variants, or (iii) that the conserved epitope is found on a non-H2A molecule. Repeated attempts to clone an S. cerevisiae hv1 homolog only resulted in the cloning of the known H2A genes yHTA1 and yHTA2. To test for functional relatedness, we attempted to rescue strains lacking the yeast H2A genes with either the Tetrahymena major H2A genes (tHTA1 or tHTA2) or the gene (tHTA3) encoding hv1. Although they differ considerably in sequence from the yeast H2A genes, the major Tetrahymena H2A genes can provide the essential functions of H2A in yeast cells, the first such case of trans-species complementation of histone function. The Tetrahymena H2A genes confer a cold-sensitive phenotype. Although expressed at high levels and transported to the nucleus, hv1 cannot replace yeast H2A proteins. Proteins from S. cerevisiae strains lacking yeast H2A genes fail to cross-react with anti-hv1 antibodies. These studies make it likely that S. cerevisiae differs from most other eukaryotes in that it does not have an H2A.F/Z homolog. A hypothesis is presented relating the absence of H2A.F/Z in S. cerevisiae to its function in other organisms.  相似文献   

14.
15.
在真核生物染色质中,H2A.Z是高度保守的组蛋白变异体,与转录调控、基因组的稳定性密切相关。为了探讨组蛋白修饰、DNA弯曲度与H2A.Z核小体定位三者之间的关联,在得到实验所测的相关数据后,利用MINE算法并结合皮尔逊相关系数在酵母全基因组的转录起始位点周围探讨了三者间的线性与非线性关系。其中MIC算法可以定量的得出数据之间关联度大小的值,用于衡量数据之间是否存在着关联,而皮尔逊相关系数则用于检查是否为线性关联。结果除了发现大部分组蛋白修饰种类和核小体定位之间存在着线性关联外,还探测到有两种组蛋白修饰数据(H4ac修饰与GCN4修饰)和核小体定位数据之间存在着以往未发现的非线性关系(大致呈正余弦函数),并从数据的生物背景(组蛋白修饰与核小体位置)上探讨了出现非线性现象的原因。  相似文献   

16.
17.
18.
Saccharomyces cerevisiae strains with either three inactivated genes (triple disruptants) or four inactivated genes (quadruple disruptants) encoding the four acidic ribosomal phosphoproteins, YP1 alpha, YP1 beta, YP2 alpha, and YP2 beta, present in this species have been obtained. Ribosomes from the triple disruptants and, obviously, those from the quadruple strain do not have bound P proteins. All disrupted strains are viable; however, they show a cold-sensitive phenotype, growing very poorly at 23 degrees C. Cell extracts from the quadruple-disruptant strain are about 30% as active as the control in protein synthesis assays and are stimulated by the addition of free acidic P proteins. Strains lacking acidic proteins do not have a higher suppressor activity than the parental strains, and cell extracts derived from the quadruple disruptant do not show a higher degree of misreading, indicating that the absence of acidic proteins does not affect the accuracy of the ribosomes. However, the patterns of protein expressed in the cells as well as in the cell-free protein system are affected by the absence of P proteins from the particles; a wild-type pattern is restored upon addition of exogenous P proteins to the cell extract. In addition, strains carrying P-protein-deficient ribosomes are unable to sporulate but recover this capacity upon transformation with one of the missing genes. These results indicate that acidic proteins are not an absolute requirement for protein synthesis but regulate the activity of the 60S subunit, affecting the translation of certain mRNAs differently.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号