首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Young sympathetic neurons die when deprived of nerve growth factor (NGF). Under such circumstances, cell death is appropriate to the developing nervous system and requires RNA and protein synthesis. We have hypothesized the existence of an endogenous death program within neurons that is suppressed by trophic factors. The extent and timing of required changes in the synthetic events that comprise the death program are unknown. In an effort to characterize the biochemical events that mediate the death program further, we performed several experiments on embryonic rat sympathetic neurons in vitro. The death program was blocked with cycloheximide when total protein synthesis was inhibited > or = 80%. When protein synthesis was inhibited within 22 +/- 4 h of NGF deprivation, death was prevented in half the neurons. Hence, we define the commitment point for protein synthesis to be 22 +/- 4 h. Analogously, the commitment point for RNA synthesis was 26 +/- 4 h and that for NGF rescue, 24 +/- 4 h. We tested the ability of a wide variety of chemicals to interfere with the death program. Most compounds tested were unable to prevent neuronal death. Some treatments, however, did save NGF-deprived neurons and were subsequently characterized. These included ultraviolet light and agents that raise intracellular concentrations of cAMP. Finally, we looked for the neuronal expression in vitro and in vivo of genes that have been associated with programmed death in other cell types, including TRPM-2/SGP-2, polyubiquitin, TGF beta-1, c-fos, and c-myc. None of these genes showed significant activation associated with neuronal death.  相似文献   

2.
Neuronal cell death happens as a result of the normal physiological process that occurs during development, or as part of the pathological process that occurs during disease. Death-associated protein kinase (DAPK) is an intracellular protein that mediates cell death by its serine/threonine kinase activity, and transmits apoptotic cell death signals in various cells, including neurons. DAPK is elevated in injured neurons in acute models of injury such as ischemia and seizure. The absence of DAPK has been shown to protect neurons from a wide variety of acute toxic insults. Moreover, DAPK also regulates neuronal cell death during central nervous system development. Neurons are initially overproduced in the developing nervous system, following which approximately one-half of the original cell population dies. This “naturally-occurring” or “programmed” cell death is essential for the construction of the developing nervous system. In this review, we focus on the role of DAPK in neuronal cell death after neuronal injury. The participation of DAPK in developmental neuronal death is also explained.  相似文献   

3.
Young sympathetic neurons die when deprived of nerve growth factor (NGF). Under such circumstances, cell death is appropriate to the developing nervous system and requires RNA and protein synthesis. We have hypothesized the existence of an endogenous death program within neurons that is suppressed by trophic factors. The extent and timing of required changes in the synthetic events that comprise the death program are unknown. In an effort to characterize the biochemical events that mediate the death program further, we performed several experiments on embryonic rat sympathetic neurons in vitro. The death program was blocked with cycloheximide when total protein synthesis was inhibited ≥80%. When protein synthesis was inhibited within 22 ± 4 h of NGF deprivation, death was prevented in half the neurons. Hence, we define the commitment point for protein synthesis to be 22 ± 4 h. Analogously, the commitment point for RNA synthesis was 26 ± 4 h and that for NGF rescue, 24 ± 4 h. We tested the ability of a wide variety of chemicals to interfere with the death program. Most compounds tested were unable to prevent neuronal death. Some treatments, however, did save NGF-deprived neurons and were subsequently characterized. These included ultraviolet light and agents that raise intracellular concentrations of cAMP. Finally, we looked for the neuronal expression in vitro and in vivo of genes that have been associated with programmed death in other cell types, including TRPM-2/SGP-2, polyubiquitin, TGFβ-1, c-fos, and c-myc. None of these genes showed significant activation associated with neuronal death. © 1992 John Wiley & Sons, Inc.  相似文献   

4.
Two hours after a single intraperitoneal injection of dexamethasone (20 micrograms/Kg b.w.) into adult male rats, a typical ladder of DNA fragments was detectable upon separation on agarose gels of DNA from thymocytes. This became maximally evident at 4 hours. Accumulation of sulfated glycoprotein-2 (SGP-2) mRNA, whose rate of expression has been associated to the processes of programmed cell death, preceded the appearance of DNA degradation, starting to increase as early as 30 min after steroid injection, and maintained higher than controls until 8 hrs; a different time course was shown by changes in the levels of beta-actin mRNA. In the spleen, under the same conditions, the SGP-2 message also increased at 30 min, prior to DNA fragmentation, but decreased thereafter below the control value.  相似文献   

5.
Mechanisms accounting for the cellular entry of calcium that mediates cellular proliferation and apoptosis have been obscure. Previously we reported selective augmentation of type 3 inositol (1,4,5) trisphosphate receptors (IP(3)R3) in lymphocytes undergoing programmed cell death, which was prevented by antisense constructs to IP(3)R3. We now report increases in mRNA and protein levels for IP(3)R3 associated with cell death in several apoptotic paradigms in diverse tissues. Elevations of IP(3)R3 occur during developmental apoptosis in early postnatal cerebellar granule cells, dorsal root ganglia, embryonic hair follicles, and intestinal villi. Neurotoxic damage elicited by the glutamate agonist kainate is also associated with IP(3)R3 augmentation. In chick dorsal root ganglia neurons undergoing apoptosis due to deprivation of nerve growth factor, levels of IP(3)R3 are selectively increased and cell death is selectively prevented by antisense oligonucleotides to IP(3)R3. Thus, IP(3)R3 appears to participate actively in cell death in a diversity of tissues.  相似文献   

6.
Development of the cutaneous sensory nervous system is dependent on the production of neurotrophic factors, such as nerve growth factor (NGF), by the skin. Limited synthesis of NGF in developing skin is thought to underlie programmed cell death and cause a 50% neuronal loss. This loss does not occur in transgenic mice that overexpress NGF in the skin, which have double the number of neurons (J. Neurosci. 14 (1994) 1422). To determine whether increased NGF blocks neuronal death and/or increases neuronal precursor replication, we analyzed the trigeminal ganglia at embryonic days E12.5, E14.5 and E16.5 using transferase-mediated dUTP nick-end labeling (TUNEL) and bromodeoxyuridine labeling. Results show that excess target-derived NGF causes a major decrease in the percent of TUNEL-labeled neurons without affecting the percent of replicating neurons. Analysis of RNA and protein expression suggests this block in cell death is mediated via the anti-apoptotic protein bcl-2.  相似文献   

7.
The expression of clusterin has been shown to be elevated in several models of experimentally induced programmed cell death and in association with a number of neurodegenerative conditions. In order to test whether this protein is expressed in neurons during development, the expression of clusterin was examined in the developing nervous system, using immunohistochemistry and mRNA analysis. Clusterin expression was observed in the earliest neurons of the cortical plate on embryonic day (E) 12. Thereafter, the intensity of clusterin staining continued to increase in an age-dependent manner, with the greatest intensity of staining being found in the postnatal mature brain. Virtually all neurons were clusterin-positive and there was no evidence for the appearance of clusterin-positive cells specifically during epochs of programmed neuronal death in the embryo. This study suggests that clusterin has a role in neuronal maturation and it is unlikely to be associated exclusively with neuronal cell death. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
Neurotrophins control neuron number during development by promoting the generation and survival of neurons and by regulating programmed neuronal death. In the latter case, the cell death induced by nerve growth factor (NGF) in the developing chick retina is mediated by p75(NTR), the common neurotrophin receptor (J. M. Frade, A. Rodriguez-Tebar, and Y.-A. Barde, 1996, Nature 383, 166-168). Here we show that NGF also induces the programmed death of paraxial mesoderm cells in the developing somites. Both NGF and p75(NTR) are expressed in the somites of chick embryos at the time and the place of programmed cell death. Moreover, neutralizing the activity of endogenous NGF with a specific blocking antibody, or antagonizing NGF binding to p75(NTR) by the application of human NT-4/5, reduces the levels of apoptotic cell death in both the sclerotome and the dermamyotome by about 50 and 70%, respectively. Previous data have shown that Sonic hedgehog is necessary for the survival of differentiated somite cells. Consistent with this, Sonic hedgehog induces a decrease of NGF mRNA in somite explant cultures, thus showing the antagonistic effect of NGF and Sonic hedgehog with respect to somite cell survival. The regulation of programmed cell death by NGF/p75(NTR) in a mesoderm-derived tissue demonstrates the capacity of neurotrophins and their receptors to influence critical developmental processes both within and outside of the nervous system.  相似文献   

9.
Cyclin D1 is an essential mediator of apoptotic neuronal cell death.   总被引:25,自引:3,他引:22       下载免费PDF全文
Many neurons in the developing nervous system undergo programmed cell death, or apoptosis. However, the molecular mechanism underlying this phenomenon is largely unknown. In the present report, we present evidence that the cell cycle regulator cyclin D1 is involved in the regulation of neuronal cell death. During neuronal apoptosis, cyclin D1-dependent kinase activity is stimulated, due to an increase in cyclin D1 levels. Moreover, artificial elevation of cyclin D1 levels is sufficient to induce apoptosis, even in non-neural cell types. Cyclin D1-induced apoptosis, like neuronal apoptosis, can be inhibited by 21 kDa E1B, Bcl2 and pRb, but not by 55 kDa E1B. Most importantly, however, overexpression of the cyclin D-dependent kinase inhibitor p16INK4 protects neurons from apoptotic cell death, demonstrating that activation of endogenous cyclin D1-dependent kinases is essential during neuronal apoptosis. These data support a model in which neuronal apoptosis results from an aborted attempt to activate the cell cycle in terminally differentiated neurons.  相似文献   

10.
11.
Cell death in the oligodendrocyte lineage.   总被引:4,自引:0,他引:4  
We have recently found that about 50% of newly formed oligodendrocytes normally die in the developing rat optic nerve. When purified oligodendrocytes or their precursors are cultured in the absence of serum or added signalling molecules, they die rapidly with the characteristics of programmed cell death. This death is prevented either by the addition of medium conditioned by cultures of their normal neighboring cells in the developing optic nerve, or by the addition of platelet-derived growth factor (PDGF) or insulin-like growth factors (IGFs). Increasing PDGF in the developing optic nerve decreases normal oligodendrocyte death by up to 90% and doubles the number of oligodendrocytes, suggesting that this normally occurring glial cell death might result from a competition for limiting amounts of survival signals. These results suggest that competition for limiting amounts of survival factors is not confined to developing neurons, and raise the possibility that a similar mechanism may be responsible for some naturally occurring cell deaths in nonneural tissues.  相似文献   

12.
13.
Activation of caspases is an essential step toward initiating apoptotic cell death. During metamorphosis of Drosophila melanogaster, many larval neurons are programmed for elimination to establish an adult central nervous system (CNS) as well as peripheral nervous system (PNS). However, their neuronal functions have remained mostly unknown due to the lack of proper tools to identify them. To obtain detailed information about the neurochemical phenotypes of the doomed larval neurons and their timing of death, we generated a new GFP-based caspase sensor (Casor) that is designed to change its subcellular position from the cell membrane to the nucleus following proteolytic cleavage by active caspases. Ectopic expression of Casor in vCrz and bursicon, two different peptidergic neuronal groups that had been well-characterized for their metamorphic programmed cell death, showed clear nuclear translocation of Casor in a caspase-dependent manner before their death. We found similar events in some cholinergic neurons from both CNS and PNS. Moreover, Casor also reported significant caspase activities in the ventral and dorsal common excitatory larval motoneurons shortly after puparium formation. These motoneurons were previously unknown for their apoptotic fate. Unlike the events seen in the neurons, expression of Casor in non-neuronal cell types, such as glial cells and S2 cells, resulted in the formation of cytoplasmic aggregates, preventing its use as a caspase sensor in these cell types. Nonetheless, our results support Casor as a valuable molecular tool not only for identifying novel groups of neurons that become caspase-active during metamorphosis but also for monitoring developmental timing and cytological changes within the dying neurons.  相似文献   

14.
Davies AM 《The EMBO journal》2003,22(11):2537-2545
Cell death is a prominent feature of the developing vertebrate nervous system, affecting neurons, glial cells and their progenitors. The most extensively studied and best understood phase of cell death occurs in populations of neurons shortly after they begin establishing connections with other neurons and/or non-neural tissues. This phase of cell death makes appropriate adjustments to the relative sizes of interconnected groups of neurons and matches the size of neuronal populations that innervate non-neural tissues to the optimal requirements of these tissues. The fate of neurons during this period of development is regulated by a variety of secreted proteins that either promote survival or bring about cell death after binding to receptors expressed on the neurons. These proteins may be derived from the targets the neurons innervate, the afferents they receive or from associated glial cells, or they may be secreted by the neurons themselves. In this review, I will outline the established and emerging principles that modulate neuronal number in the developing nervous system.  相似文献   

15.
We have recently found that about 50% of newly formed oligodendrocytes normally die in the developing rat optic nerve. When purified oligodendrocytes or their precursors are cultured in the absence of serum or added signalling molecules, they die rapidly with the characteristics of programmed cell death. This death is prevented either by the addition of medium conditioned by cultures of their normal neighboring cells in the developing optic nerve, or by the addition of platelet-derived growth factor (PDGF) or insulin-like growth factors (IGFs). Increasing PDGF in the developing optic nerve decreases normal oligodendrocyte death by up to 90% and doubles the number of oligodendrocytes, suggesting that this normally occurring glial cell death might result from a competition for limiting amounts of survival signals. These results suggest that competition for limiting amounts of survival factors is not confined to developing neurons, and raise the possibility that a similar mechanism may be responsible for some naturally occurring cell deaths in nonneural tissues. © 1992 John Wiley & Sons, Inc.  相似文献   

16.
During development of the nervous system, large numbers of neurons are overproduced and then eliminated by programmed cell death. Puma is a BH3-only protein that is reported to be involved in the initiation of developmental programmed cell death in rodent retinal neurons. The expression and cellular localization of Puma in retinal tissues during development are not, however, well known. Here the authors report the expression pattern of Puma during retinal development in the rat. During the period of programmed cell death in the retina, Puma was expressed in some members of each retinal neuron, including retinal ganglion cells, amacrine cells, bipolar cells, horizontal cells, and photoreceptor cells. Although the developmental programmed cell death of cholinergic amacrine cells is known to be independent of Puma, this protein was expressed in almost all their dendrites and somata of cholinergic amacrine cells at postnatal age 2 to 3 weeks, and it continued to be detected in cholinergic dendrites in the inner plexiform layer for up to 8 weeks after birth. These results suggest that Puma has some significant roles in retinal neurons after eye opening, especially that of cholinergic amacrine cells, in addition to programmed cell death of retinal neurons before eye opening.  相似文献   

17.
The type of DNA damage and the role of poly (ADP-ribosyl) polymerase (ADPRP) and sulphated glyprotein 2 (SGP-2) in programmed cell death (apoptosis) was investigated in the following model systems: i) rat thymocytes treated with dexamethasone (DEX) eitherin vitro orin vivo; ii) human perypheral blood mononuclear cells (hPBMCs) exposed to oxygen free radicals (OR); iii) K562 cell line killed by hPBCs during spontaneous (NK) or interleukin-2 (IL-2)-induced (LAK) cytotoxic activity. The results suggest that ADPRP and SGP-2 are involved in the apoptotic process, but their role probably differs according to the type of cell and the inducing damage/stimulus. Moreover, no simple correlation appears to exist between the extent of DNA damage and cell survival or cell death.  相似文献   

18.
Glutamate is a classical excitotoxin of the central nervous system (CNS), but extensive work demonstrates neuroprotective roles of this neurotransmitter in developing CNS. Mechanisms of glutamate-mediated neuroprotection are still under scrutiny. In this study, we investigated mediators of glutamate-induced neuroprotection, and tested whether this neurotransmitter controls programmed cell death in the developing retina. The protective effect of N-methyl-d-aspartate (NMDA) upon differentiating cells of retinal explants was completely blocked by a neutralizing antibody to brain-derived neurotrophic factor (BDNF), but not by an antibody to neurotrophin-4 (NT-4). Consistently, chronic activation of NMDA receptor increased the expression of BDNF and trkB mRNA, as well as BDNF protein content, but did not change the content of NT-4 mRNA in retinal tissue. Furthermore, we showed that in vivo inactivation of NMDA receptor by intraperitoneal injections of MK-801 increased natural cell death of specific cell populations of the post-natal retina. Our results show that chronic activation of NMDA receptors in vitro induces a BDNF-dependent neuroprotective state in differentiating retinal cells, and that NMDA receptor activation controls programmed cell death of developing retinal neurons in vivo.  相似文献   

19.
The molecular basis of programmed cell death (PCD) of neurons during early metamorphic development of the central nervous system (CNS) in Drosophila melanogaster are largely unknown, in part owing to the lack of appropriate model systems. Here, we provide evidence showing that a group of neurons (vCrz) that express neuropeptide Corazonin (Crz) gene in the ventral nerve cord of the larval CNS undergo programmed death within 6 hours of the onset of metamorphosis. The death was prevented by targeted expression of caspase inhibitor p35, suggesting that these larval neurons are eliminated via a caspase-dependent pathway. Genetic and transgenic disruptions of ecdysone signal transduction involving ecdysone receptor-B (EcR-B) isoforms suppressed vCrz death, whereas transgenic re-introduction of either EcR-B1 or EcR-B2 isoform into the EcR-B-null mutant resumed normal death. Expression of reaper in vCrz neurons and suppression of vCrz-cell death in a reaper-null mutant suggest that reaper functions are required for the death, while no apparent role was found for hid or grim as a death promoter. Our data further suggest that diap1 does not play a role as a central regulator of the PCD of vCrz neurons. Significant delay of vCrz-cell death was observed in mutants that lack dronc or dark functions, indicating that formation of an apoptosome is necessary, but not sufficient, for timely execution of the death. These results suggest that activated ecdysone signaling determines precise developmental timing of the neuronal degeneration during early metamorphosis, and that subsequent reaper-mediated caspase activation occurs through a novel DIAP1-independent pathway.  相似文献   

20.
To assess the relationship between cell proliferation and cell death, the mRNA accumulation of ornithine decarboxylase (ODC) and sulfated glycoprotein 2 (SGP-2) were measured in human peripheral blood lymphocytes (HPBL) 2-6 hours after stimulation with phytohemagglutinin (PHA). ODC is the rate limiting enzyme of polyamines biosynthesis and its early induction in mitogen-stimulated lymphocytes has been reported. On the other hand, SGP-2, a glycoprotein present in most mammalian tissues, is induced in classical models of apoptosis, such as dexamethasone-treated thymocytes. Indeed, a consistent amount of SGP-2 mRNA in quiescent HPBL, an early and progressive decrease of SGP-2 mRNA and a parallel increase of ODC mRNA accumulation, were observed, in PHA-stimulated HPBL, suggesting that concomitant repression of SGP-2 and induction of ODC genes contribute for the cell entering the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号