首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies suggested that opioid receptor agonists infused into the lateral ventricles can inhibit (through mu receptors) or facilitate (through delta receptors) the lordosis behavior of ovariectomized (OVX) rats treated with estrogen and a low dose of progesterone. The present study investigated the behavioral and hormonal specificity of those effects using more selective opioid receptor agonists. Sexually experienced OVX rats were implanted stereotaxically with guide cannulae aimed at the right lateral ventricle. One group of rats was treated with estradiol benzoate (EB, 10 micrograms) 48 hr and progesterone (P, 250 micrograms) 4 hr before testing, whereas the other group was treated with EB alone. Rats were infused with different doses of the selective mu-receptor agonist DAMGO, the selective delta-receptor agonist DPDPE, or the selective kappa-receptor agonist U50-488. The females were placed with a sexually vigorous male in a bilevel chamber (Mendelson and Gorzalka, 1987) for three tests of sexual behavior, beginning 15, 30, and 60 min after each infusion. DAMGO reduced lordosis quotients and magnitudes significantly in rats treated with EB and P, but not in rats treated with EB alone. In contrast, DPDPE and U50-488H increased lordosis quotients and magnitudes significantly in both steroid-treatment groups. Surprisingly, measures of proceptivity, rejection responses, and level changes were not affected significantly by mu or kappa agonists, although proceptivity and rejection responses were affected by DPDPE treatment. These results suggest that the effects of lateral ventricular infusions of opioid receptor agonists on the sexual behavior of female rats are relatively specific to lordosis behavior. Moreover, the facilitation of lordosis behavior by delta- or kappa-receptor agonists is independent of progesterone treatment, whereas the inhibitory effect of mu-receptor agonists on lordosis behavior may require the presence of progesterone.  相似文献   

2.
The progestin receptor antagonist RU 38486 (henceforth referred to as RU 486) was tested for facilitative effects on female receptive behavior in ovariectomized Long-Evans rats primed with 2 micrograms estradiol benzoate (EB). RU 486 (0, 0.5, 1.6, or 5.0 mg) was administered 48 hr after estrogen priming. The lordosis quotient (LQ) and lordosis score (LS) were assessed 4 hr after RU 486 administration in a standardized test consisting of a 10-mount test by a stimulus male. A significant dose effect was found by both LQ and LS, with those subjects receiving 5 mg of RU 486 being significantly more receptive than vehicle control animals. Thus RU 486 acted as a weak progestin agonist under testing conditions typical for assessment of progestin facilitation of female sexual behavior in rats. Low levels of proceptive behavior (hops and darts) were seen in a minority of the tests, and did not vary systematically as a function of the dose of RU 486 administered. We also examined the effects of RU 486 given before progesterone (P) on receptivity in a blocking paradigm and confirmed previous reports that the antagonist significantly attenuates facilitation of sexual behavior when given in combination with P. A progestin receptor assay of the cytosols of the hypothalamus-preoptic area in estrogen-primed female rats treated with 5 mg RU 486 revealed a significantly greater depletion of available cytosolic P receptors than when rats were treated with a similarly facilitating dose of P (100 micrograms). The results suggest a possible dual mode of action for RU 486--a weak, receptor-mediated agonistic effect on sexual behavior when given alone to estrogen-primed rats, and a competitive blocking effect on receptivity when administered with P.  相似文献   

3.
J G Pfaus  B B Gorzalka 《Peptides》1987,8(2):309-317
The effects of opioid peptides that are highly selective ligands for mu receptors (morphiceptin). delta receptors (delta-receptor peptide), kappa receptors (dynorphin 1-9), and the mu/delta complex (beta-endorphin), were tested on lordosis behavior in ovariectomized rats primed with estrogen and progesterone. Intracerebroventricular infusions of beta-endorphin or morphiceptin both inhibited and facilitated lordosis in a dose-dependent fashion whereas all doses of delta-receptor peptide facilitated lordosis. Dynorphin 1-9 had no significant effect at any dose, although a trend toward increased lordosis quotients was observed 30 min after infusion. The effects of beta-endorphin, morphiceptin, and delta-receptor peptide were reversed with naloxone, although naloxone alone had no effect on lordosis behavior. These results indicate that the specific activation of opioid receptor subtypes differentially affects lordosis behavior. It appears that binding to high-affinity mu 1 receptors exerts an inhibitory influence on lordosis, whereas binding to low-affinity mu 2 receptors or delta receptors exerts a facilitatory influence. Binding to kappa receptors does not appear to affect lordosis behavior.  相似文献   

4.
K Kujirai  S Fahn  J L Cadet 《Peptides》1991,12(4):779-785
The receptor autoradiographic distribution of opioid peptide receptors in spontaneously hypertensive rats (SHR) was compared to that of Sprague-Dawley (SD) rats, using the highly selective mu and delta opioid receptor ligands, [3H]DAGO (Tyr-D-Ala-Gly-NMe-Phe-Gly-ol) and [3H]DPDPE ([D-Pen2,D-Pen5]enkephalin), respectively. Although the distribution of these binding sites was similar in both strains, SHR showed significantly higher binding densities of mu receptors in 16 of 27 areas examined. These included the patch and matrix components of the caudate-putamen (CPu), olfactory tubercle, endopiriform nucleus, anterior cingulate cortex, ventral tegmental area lateroposteral thalamic nucleus and the ventral part of the dentate gyrus. In contrast, SHR had lower [3H]DAGO binding sites in the CA1 of the hippocampus. Conversely, SHR showed higher binding densities of delta receptors in 7 of 20 areas examined, including the CPu, CA2 and CA3 areas of the hippocampus and the central grey. High-to-low lateromedial gradients of striatal delta receptors were observed in both strains. Because opioid peptides are known to participate in locomotive behavior in rodents and in the control of blood pressure, the present results support a role of opioid peptidergic systems in the manifestation of hyperactivity and hypertension observed in SHR.  相似文献   

5.
6.
Six analogs of the highly delta opioid receptor selective, conformationally restricted, cyclic peptide [D-Pen2,D-Pen5]enkephalin, Tyr-D-Pen-Gly-Phe-D-PenOH (DPDPE), were synthesized and evaluated for opioid activity in rat brain receptor binding and mouse vas deferens (MVD) smooth muscle assays. All analogs were single amino acid modifications of DPDPE and employed amino acid substitutions of known effects in linear enkephalin analogs. The effect on binding affinity and MVD potency of each modification within the DPDPE structural framework was consistent with the previous reports on similarly substituted linear analogs. Conformational features of four of the modified DPDPE analogs were examined by 1H NMR spectroscopy and compared with DPDPE. From these studies it was concluded that the observed pharmacological differences with DPDPE displayed by diallyltyrosine1-DPDPE ([DAT1]DPDPE) and phenylglycine4-DPDPE ([Pgl4]DPDPE) are due to structural and/or conformational differences localized near the substituted amino acid. The observed enhanced mu receptor binding affinity of the carboxamide terminal DPDPE-NH2 appears to be founded solely upon electronic differences, the NMR data suggesting indistinguishable conformations. The observation that the alpha-aminoisobutyric acid substituted analog [Aib3]DPDPE displays similar in vitro opioid behavior as DPDPE while apparently assuming a significantly different solution conformation suggests that further detailed conformational analysis of this analog will aid the elucidation of the key structural and conformational features required for action at the delta opioid receptor.  相似文献   

7.
K Gulya  G L Kovács  P Kása 《Life sciences》1991,48(12):PL57-PL62
The effects of the potent delta opioid agonist (D-Pen2, D-Pen5)enkephalin (DPDPE) were studied on the endogenous levels and regional distribution of Zn2+ in rat central nervous system by means of flame atomic absorption spectrophotometry. The olfactory bulb exhibited the highest Zn2+ level, followed by the frontal and parietal cortices, striatum and hippocampus; the lowest ion levels were found in the medulla and thoracic spinal cord. Intracerebroventricular administration of DPDPE resulted in significant, time- and dose-dependent decreases in endogenous Zn2+ contents in the parietal cortex, hippocampus and striatum. The action of DPDPE was antagonized by a 30 min naloxone pretreatment. Naloxone alone was without effect in eliciting these responses. Thus, delta opioid receptors may regulate or modulate endogenous Zn2+ levels in the rat brain.  相似文献   

8.
In this study, the antinociceptive interactions of fixed ratio combinations of intracerebroventricularly (i.c.v.) given morphine and subantinociceptive doses of the delta agonists, [D-Pen2, D-Pen5]enkephalin (DPDPE), [D-Ala2, Glu4]deltorphin (DELT) or [Met5]enkephalin (MET) were examined using the mouse warm water tail flick test. When morphine was coadministered with DPDPE or DELT in a 4:1 and 9:1 mixture, respectively, a synergistic antinociceptive effect was observed. In contrast, when morphine was coadministered with MET in a 1:2 fixed ratio mixture, a subadditive interaction occurred. These results demonstrate both positive and negative modulatory interactions of delta agonists with morphine in an antinociceptive endpoint and that these interactions can be either supra- or subadditive. The data support the concept of a functional interaction between opioid mu and delta receptors and a potential regulatory role for the endogenous ligands of the opioid delta receptor.  相似文献   

9.
Tetrapeptides of primary sequence Tyr-X-Phe-YNH2, where X is D-Cys or D-Pen (penicillamine) and where Y is D-Pen or L-Pen, were prepared and were cyclized via the side chain sulfurs of residues 2 and 4 to disulfide or dithioether-containing analogs. These peptides are related to previously reported penicillamine-containing pentapeptide enkephalin analogs but lack the central glycine residue of the latter and were designed to assess the effect of decreased ring size on opioid activity. Binding affinities of the tetrapeptides were determined to both mu and delta opioid receptors. Binding affinity and selectivity in the tetrapeptide series were observed to be highly dependent on primary sequence. For example, L-Pen4 analogs displayed low affinity and were nonselective, while the corresponding D-Pen4 diastereomers were of variable affinity and higher selectivity. Among the latter compounds were examples of potent analogs in which selectivity shifted from delta selective to mu selective as the ring size was increased. The relatively high binding affinity and delta receptor selectivity observed with one of the carboxamide terminal disulfide analogs led to the synthesis of the corresponding carboxylic acid terminal, Tyr-D-Cys-Phe-D-PenOH. This analog displayed delta receptor binding selectivity similar to that of the standard delta ligand, [D-Pen2,D-Pen5]enkephalin (DPDPE), and was found to have a 3.5-fold higher binding affinity than DPDPE. All the tetrapeptides were further evaluated in the isolated mouse vas deferens (mvd) assay and all displayed opioid agonist activity. In general, tetrapeptide potencies in the mouse vas deferens correlated well with binding affinities but were somewhat lower. Receptor selectivity in the mvd, assessed by examining the effect of opioid antagonists on the tetrapeptide concentration-effect curves, was similar to that determined in the binding studies.  相似文献   

10.
A Dray  L Nunan  W Wire 《Life sciences》1985,36(14):1353-1358
beta-Funaltrexamine (beta-FNA) was tested in the spinal cord and supraspinally against inhibition of reflex bladder contractions produced in the anesthetized rat by the opioid-receptor selective agonists [D-Ala2, MePhe4, Gly (ol)5]enkephalin (DAGO, mu-agonist) and [D-Pen2, D-Pen5] enkephalin (DPDPE, delta-agonist). All agents were microinjected either intracerebroventricularly (i.c.v.) or intrathecally (i.t.). beta-FNA (1-8 micrograms) produced long-lasting antagonism of both DAGO and DPDPE. Complete recovery from its effects was only observed some 24-32 h later. Higher doses of beta-FNA (4 and 8 micrograms i.t.) produced short-lived agonistic activity though the selectivity of this was not determined. It was concluded that beta-FNA was a potent, long-lasting antagonist at central opioid receptors in vivo but was unselective for the mu and delta opioid receptor.  相似文献   

11.
J A Qi  H I Mosberg  F Porreca 《Life sciences》1990,47(11):PL43-PL47
The present study has characterized the antinociceptive actions of [D-Ala2]deltorphin II following intracerebroventricular (i.c.v.) administration in the mouse tail-flick test. [D-Ala2]deltorphin II produced dose- and time-related antinociception, with maximal effects at +10 min and significant antinociception which lasted for 40-60 min. [D-Ala2]deltorphin II was 13-fold more potent than i.c.v. [D-Pen2, D-Pen5]enkephalin (DPDPE), a second highly selective delta agonist, and approximately equipotent with i.c.v. morphine in producing antinociception. The antinociceptive effects of i.c.v. [D-Ala2]deltorphin II and DPDPE, but not those of morphine, were antagonized by the selective delta antagonist, ICI 174,864. In contrast, pretreatment with the non-equilibrium mu antagonist, beta-funaltrexamine blocked morphine antinociception, but failed to antagonize [D-Ala2]deltorphin II and DPDPE antinociception. These data indicate that [D-Ala2]deltorphin II produced its antinociceptive effects at a supraspinal delta receptor. [D-Ala2]deltorphin II appears to be the most appropriate delta opioid agonist currently available for studies in vivo and support the involvement of delta receptors in supraspinal antinociception.  相似文献   

12.
A number of DPDPE-dermenkephalin chimeric peptides have been synthesized in which the putative C-terminal delta-address of dermenkephalin has been linked to the highly delta opioid selective cyclic peptide [D-Pen2,D-Pen5]enkephalin (DPDPE). Asp, Met-Asp and Leu-Met-Asp have been added to the C-terminus of DPDPE and both the carboxyl terminal and the carboxamide terminal series have been prepared. The bioassays using the mouse vas deferens and guinea pig ileum preparations have revealed a steady decrease in potency (compared to DPDPE) at delta and mu receptors as the dermenkephalin sequences were added. Some of the analogues, however, retained high delta selectivity. Similar results were obtained using radioligand binding assays. These findings suggest that the C-terminal amino acid sequence of dermenkephalin plays a role of delta-address which is specific to dermenkephalin itself, and is not additive with another delta selective ligand such as DPDPE.  相似文献   

13.
It has been found that stimulation of delta-1 opioid receptors by intravenous administration of DPDPE (0.5 mg/kg) decreases the incidence of ischemic and reperfusion-induced arrhythmias and also increases myocardial tolerance to the arrhythmogenic action of epinephrine in rats. Pretreatment with a selective delta-2 agonist, DSLET, had no antiarrhythmic effect. The inhibition of the enzymatic breakdown of endogenous enkephalins by intravenous administration of acetorphan decreased the incidence of epinephrine-induced arrhythmias. Pretreatment with a selective delta opioid receptor antagonist, ICI-174.868, completely abolished this antiarrhythmic effect. Adaptation of rats to repeated immobilization stress during 12 days increased myocardial tolerance to the arrhythmogenic action of coronary artery occlusion (10 min) and reperfusion (10 min). Pretreatment with a selective delta opioid receptor antagonist, TIPP(Psy), did not abolish the antiarrhythmic effect of adaptation to immobilization stress. It seems that endogenous agonists of delta opioid receptors are not involved in the antiarrhythmic effect resulting from adaptation to stress.  相似文献   

14.
These studies examined the effect of cocaine on the analgesia produced by systemically and centrally administered opioid agonists. Cocaine (50 mg/kg, s.c.) increased the analgesic potency of systemic, ICV and IT morphine; and the ICV and IT analgesic effects of the delta selective peptide, [D-Pen2,D-Pen5]enkephalin (DPDPE). Cocaine also increased the analgesic potency of the mu selective ligand [D-Ala2,NMePhe4,Gly-ol5]enkephalin (DAGO) administered ICV. However, cocaine did not alter the ED50 for IT DAGO. GC-MS studies indicated that brain cocaine concentration was approximately 3.0 micrograms/g wet weight 45 min following s.c. administration. These results suggest that cocaine-induced increases in opioid analgesic potency are mediated at brain mu and delta receptors and spinal mu receptors. Furthermore, there might be functional differences between spinal and supraspinal sites at which DAGO produces analgesia.  相似文献   

15.
Because manipulations of the noradrenergic system affect both lordosis behavior and progestin receptor levels in female guinea pigs, the present study attempted to determine if the noradrenergic (NE) system affects lordosis solely because of its impact on progestin receptors. Although the progestin receptor antagonist RU486 significantly reduced progesterone-facilitated lordosis, it had no effect on lordosis induced by the alpha-NE agonist clonidine in estrogen-primed female guinea pigs. This indicates that although progesterone may facilitate lordosis in female guinea pigs via activation of progestin receptors, the alpha-noradrenergic agonist clonidine does not mediate lordosis through the same mechanism.  相似文献   

16.
The present study investigated the effects of a striatal lesion induced by kainic acid on the striatal modulation of dopamine (DA) release by mu- and delta-opioid peptides. The effects of [D-Pen2,D-Pen5]-enkephalin (DPDPE) and [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAGO), two highly selective delta- and mu-opioid agonists, respectively, were studied by microdialysis in anesthetized rats. In control animals both opioid peptides, administered locally, significantly increased extracellular DA levels. The effects of DPDPE were also observed in animals whose striatum had been previously lesioned with kainic acid. In contrast to the effects of the delta agonist, the significant increase induced by DAGO was no longer observed in lesioned animals. These results suggest that delta-opioid receptors modulating the striatal DA release, in contrast to mu receptors, are not located on neurons that may be lesioned by kainic acid.  相似文献   

17.
RU 486 is known primarily as an antagonist to progestins and glucocorticoids. However, RU 486 has also been shown to have agonistic progestational properties in biochemical and behavioral studies. In the current study, RU 486 was implanted directly into tim ventromedial hypothalamus (VMH) to test for facilitative action on the receptive behavior of female ovariectomized Long-Evans rats primed with 5 μg of estradiol benzoate. Cannulae containing RU 486, progesterone (P), or empty cannulae were implanted 48 hr after estrogen priming. The lordosis quotient and the lordosis score were assessed 4 hr after the cannulae were lowered by a standardized test consisting of 10 mounts by a stimulus male. P and RU 486 significantly facilitated receptivity compared to blank implants in terms of lordosis quotient and lordosis score, with no significant difference between the hormone treatments. While only a single dose of each treatment was given in the current study, RU 486 facilitated lordosis when implanted to the VMH as well as progesterone in contrast to our previous results where the steroids were administered systemically.  相似文献   

18.
We studied the role of progesterone receptor (PR) in the display of female sexual behavior during postpartum estrus in rats. Adult female rats were treated with the PR antagonist, RU486 (1.25 and 5 mg), 3 h after parturition and sexual behavior was evaluated throughout the first postpartum day. Estradiol and progesterone serum levels changed during the first 24 h postpartum. The highest estradiol and progesterone levels were found at 9 and 12 h postpartum, respectively. The predominant PR isoform in the hypothalamus and the preoptic area was PR-A during postpartum day. The content of PR-A increased at 6 h postpartum in the hypothalamus and the preoptic area, and decreased in both regions at 9 h. PR-B content only increased in the preoptic area at 12 h postpartum. The highest display of lordotic and proceptive behaviors were found at 12 h postpartum. The treatment with 1.25 and 5 mg of RU486 respectively reduced lordosis by 61% and 92% at 12 h postpartum. These results suggest that PR is essential in the display of postpartum estrus in rats.  相似文献   

19.
Agonist exposure of many G protein-coupled receptors stimulates an activation of extracellular signal-regulated protein kinases (ERKs) 1 and 2, members of the mitogen-activated protein kinase (MAPK) family. Here, we show that treatment of human embryonic kidney (HEK) 293 cells stably transfected to express the rat micro-opioid receptor (MOR1) with [D-Ala2,MePhe4,Gly5-ol]enkephalin (DAMGO) stimulated a rapid and transient (3-5-min) activation and nuclear translocation of MAPK. Exposure of these cells to the MAPK kinase 1 inhibitor PD98059 not only prevented MAPK activation but also inhibited homologous desensitization of the mu-opioid receptor. We have therefore determined the effect of PD98059 on agonist-induced mu-receptor phosphorylation. DAMGO stimulated a threefold increase in MOR1 phosphorylation within 20 min that could be reversed by the antagonist naloxone. PD98059 produced a dose-dependent inhibition of agonist-promoted mu-receptor phosphorylation with an IC50 of 20 microM. DAMGO also induced MOR1 internalization that peaked at 30 min. Confocal microscopy revealed that DAMGO-induced MOR1 internalization was also largely inhibited in the presence of PD98059. U0126, another chemically unrelated inhibitor of the MAPK cascade, mimicked the effect of PD98059 on mu-receptor phosphorylation and desensitization. MOR1 itself, however, appears to be a poor substrate for MAPK because mu-receptors immunoprecipitated from stably transfected HEK 293 cells were not phosphorylated by exogenous ERK 2 in vitro. The fact that morphine also triggered MAPK activation but did not induce MOR1 internalization indicates that receptor internalization was not required for MOR1-mediated mitogenic signaling. We conclude that MOR1 stimulates a rapid and intemalization-independent MAPK activation. Activation of the MAPK cascade in turn may not only relay mitogenic signals to the nucleus but also trigger initial events leading to phosphorylation and desensitization of the mu-opioid receptor.  相似文献   

20.
The effects of the selective delta-1 (delta(1)) opioid receptor agonist, DPDPE, and the selective delta(2) opioid receptor agonist, DSLET, have been studied on the ventricular fibrillation threshold (VFT) in rats with an experimental post-infarction cardiosclerosis (CS). It has been found that CS induced a significant decrease in VFT. This CS-induced decrease in VFT was significantly reversed by intravenous administration of DPDPE (0.1 mg/kg) 10 min before VFT measurement. On the contrary, intravenous injection of DSLET (0.5 mg/kg) exacerbated the CS-induced cardiac electrical instability. Pretreatment with the selective delta opioid receptor antagonist, ICI 174,864 (0.5 mg/kg), completely abolished the changes in VFT produced by both DPDPE and DSLET. Previous administration of a nonselective peripherally acting opioid receptor antagonist, naloxone methiodide (5 mg/kg) also completely reversed the antifibrillatory action of DPDPE. Naloxone methiodide and ICI 174,864 alone had no effect on VFT. Pretreatment with the nonselective K(ATP) channel blocker, glibenclamide (0.3 mg/kg), or with the mitochondrial selective K(ATP) channel blocker, 5-hydroxydecanoic acid (5-HD, 5 mg/kg), completely abolished the DPDPE-induced increase in cardiac electrical stability. Glibenclamide and 5-HD alone had no effect on VFT. These results demonstrate that the delta opioid receptor plays an important role in the regulation of electrical stability in rats with post-infarction cardiosclerosis. We propose that peripheral delta(1) opioid receptor stimulation reverses CS-induced electrical instability via mitochondrial K(ATP) channels. On the contrary, delta(2) opioid receptor stimulation may exacerbate the CS-induced decrease in VFT. Further studies are necessary to determine the delta opioid receptor subtype which mediates the antifibrillatory effect of DPDPE and pro-fibrillatory effect of DSLET.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号