首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The duration of the antagonizing activity of RU486 on tyrosine aminotransferase (TAT) induction and the glucocorticoid receptor in rat liver was studied. A single dose of RU486 (10 mg/kg) caused occupation of the cytosol glucocorticoid receptor in rat liver at 1h. During this time no nuclear binding of [3H]dexamethasone ([3H]Dex) receptor complex was recorded, and TAT induction was completely blocked. TAT inducibility recovery parallelled receptor binding in both the cytosol and the nuclei, reaching maximum at 12 h. In contrast, nuclear binding recovered in 24 h, and [3H]Dex receptor binding in cytosol 48 h after RU486 application. It is concluded that the inhibitory effect of a single dose of RU486 on TAT induction is of rather short duration. At concomitant presence of agonist and antagonist in vivo, no direct correlation between agonist receptor occupancy and TAT induction could be observed.  相似文献   

2.
A pulse-chase labeling technique was used to determine the properties of glucocorticoid receptors occupied by the antiglucocorticoid hormone RU486 in S49.1 mouse lymphoma cells. Cells were pulse-labeled with [35S]methionine and then at the beginning of the chase, either no hormone (control), dexamethasone, or RU486 was added to cells. At 4 h into the chase, cytosol was prepared and receptors were immunoadsorbed to protein A-Sepharose using the BuGR2 antireceptor antibody. Immunoadsorbed proteins were resolved by gel electrophoresis and analyzed by autoradiography. The 90 kDa heat shock protein (hsp90) coimmunoadsorbed with receptors from control cells when protein A-Sepharose pellets were washed with 250 mM NaCl but not when protein A-Sepharose pellets were washed with 500 mM NaCl, indicating that hsp90-receptor complexes are disrupted by a high concentration of salt in the absence of molybdate. hsp90 coimmunoadsorbed with receptors from RU486-treated cells even when protein A-Sepharose pellets were washed with 500 mM NaCl, indicating that RU486 stabilizes the association of hsp90 with the glucocorticoid receptor. In contrast, hsp90 did not coimmunoadsorb with receptors from dexamethasone-treated cells, consistent with earlier evidence that hsp90 dissociates from the receptor when the receptor binds glucocorticoid hormone. Dexamethasone induced a rapid quantum decrease in the amount of normal receptor recovered from cytosol but did not induce a decrease in the amount of nuclear transfer deficient receptor recovered from cytosol, consistent with tight nuclear binding of normal receptors occupied by dexamethasone. In contrast, RU486 did not induce a quantum decrease in the recovery of normal receptors from cytosol, indicating that receptors occupied by RU486 are not tightly bound in the nuclear fraction. We conclude that the antiglucocorticoid hormone RU486, in contrast to the glucocorticoid hormone dexamethasone, stabilizes the association between the glucocorticoid receptor and hsp90. The decreased affinity of receptors occupied by RU486 for the nuclear fraction may be due to their association with hsp90 and may account for the failure of RU486 to exert agonist activity.  相似文献   

3.
The biological potencies of four antiglucocorticoids, RU486 (RU), dexamethasone-oxetanone (DOX), R5020, and progesterone have been studied with respect to dexamethasone induction of tyrosine aminotransferase (TAT) in rat hepatoma tissue culture (HTC) cells. Their inhibitory effects in whole-cell competition binding studies (at 37 degrees C) and in TAT induction studies were analyzed by Dixon plots and Schild plots, respectively. We show that: In both cases, there is an actual competition of each antiglucocorticoid with the agonist dexamethasone for the same binding site; the two Kd values derived from the two plots are almost identical for each antiglucocorticoid; RU486 can be distinguished from the three other antiglucocorticoids by its high biological efficacy and its high affinity for the glucocorticoid receptor in whole cells at 37 degrees C (identical to its affinity in cytosol at 0 degree C). These results imply that: There is a linear correlation between the antagonist efficacies of antiglucocorticoids and their affinities for the glucocorticoid receptor in whole cells at 37 degrees C; the antagonistic action is solely mediated by competition with the agonist for the receptor binding site; this is verified by the fact that in all cases, in the presence or absence of antiglucocorticoids, a specific TAT induction level was always related to the same level of receptor saturation by the agonist in whole cells; the phenomena responsible for the high antagonist efficacy of RU486 are also responsible for its high affinity in whole cells at 37 degrees C.  相似文献   

4.
Using Chromosorb chromatography and HPLC, we measured the plasma concentrations of RU 486, and its monodemethylated (RU 42633), didemethylated (RU 42848) and alcoholic nondemethylated (RU 42698) metabolites up to 72 h following oral ingestion of 100 mg of RU 486 by five female volunteers. The peak plasma level of RU 486 (4.5 mumol/l) occurred within 1 h after ingestion of the compound; at this point significant amounts of the metabolites were also present in the plasma. After the initial redistribution within 6 h the plasma concentrations of RU 486 and three of its metabolites measured remained stable for 24 h. Concentrations of the monodomethylated metabolite exceeded those of the parent steroid during the time period measured, whereas the concentrations of the didemethylated and alcoholic metabolites were lower than those of RU 486, but still notable. At 72 h the concentrations of all the four steroids were still in the micromolar range. The relative binding affinities of these metabolites to human endometrial and myometrial progesterone receptors as well as to human placental glucocorticoid receptors were determined in vitro. The affinity of RU 486 for the human uterine progesterone receptor (Kd = 1.3 X 10(-9) M for RU 486) was higher than that of progesterone but lower than that of ORG-2058, a potent synthetic progestin. The relative binding affinities of the monodemethylated, alcoholic and didemethylated metabolites to the progesterone receptor were 21, 15 and 9%, respectively, compared with the parent compound RU 486; each was lower than that of progesterone (43%). RU 486 had an approx. 4-fold higher relative binding affinity to the glucocorticoid receptor than dexamethasone. Interestingly, the relative binding affinities of the metabolites studied to the human glucocorticoid receptor exceeded those of dexamethasone or cortisol. Compared with the parent compound RU 486, they were 61, 48 and 45% for the monodemethylated, alcoholic and didemethylated metabolites, respectively; each was higher than that of dexamethasone (23%). The affinity of dexamethasone to the human glucocorticoid receptor was 1.6 X 10(-9) M. These data indicate that the pool of certain metabolites of RU 486 may contribute to a significant extent to the antiprogestagenic (23-33%) and even greater extent to the antiglucocorticoid (47-61%) effects of RU 486.  相似文献   

5.
We have examined the influence of sulfhydryl (SH)-group modifying agents on the interaction of the rat liver glucocorticoid receptor (GR) with its known agonist triamcinolone acetonide (TA) and the newly synthesized antagonist mifepristone (RU486). In the freshly prepared cytosol, [3H]TA or [3H]RU486 bound to macromolecule(s) which sediment as 8-9 moieties: the binding of either ligand can be competed with radioinert TA or RU486. The presence of 2-10 mM dithiothreitol (DTT), beta-mercaptoethanol (beta-MER), and monothioglycerol (MTG) caused a 2-3 fold increase in the [3H]TA and [3H]RU486 binding to GR. Iodoacetamide (IA) and N-ethylmaleimide (NEM) decreased the agonist binding significantly. In contrast, the [3H]RU486 binding to GR increased by 50 percent in the presence of IA. IA and NEM inhibited the binding of the heat-transformed [3H]TA-receptor complex to DNA-cellulose by 70-90 percent whereas DNA binding of [3H]RU486-bound GR was inhibited only slightly. These results indicate that either a) the interaction of GR with the agonist or antagonist steroid ligands causes differential structural alterations, which are more readily detectable in the presence of SH-modifying agents or b) the agonist and the antagonist interact with distinct steroid binding sites.  相似文献   

6.
C Hurd  V K Moudgil 《Biochemistry》1988,27(10):3618-3623
We have examined and compared the binding characteristics of the progesterone agonist R5020 [promegestone, 17,21-dimethylpregna-4,9(10)-diene-3,20-dione] and the progesterone antagonist RU486 [mifepristone, 17 beta-hydroxy-11 beta-[4-(dimethylamino) phenyl]-17 alpha-(prop-1-ynyl)-estra-4,9-dien-3-one] in calf uterine cytosol. Both steroids bound cytosol macromolecule(s) with high affinity, exhibiting Kd values of 5.6 and 3.6 nM for R5020 and RU486 binding, respectively. The binding of the steroids to the macromolecule(s) was rapid at 4 degrees C, showing saturation of binding sites at 1-2 h for [3H]progesterone and 2-4 h for both [3H]R5020 and [3H]RU486. Addition of molybdate and glycerol to cytosol increased the extent of [3H]R5020 binding. The extent of [3H]RU486 binding remained unchanged in the presence of molybdate, whereas glycerol had an inhibitory effect. Molybdate alone or in combination with glycerol stabilized the [3H]R5020- and [3H]RU486-receptor complexes at 37 degrees C. Although the rate of association of [3H]RU486 with the cytosolic macromolecule was slower than that of [3H]R5020, its dissociation from the ligand-macromolecule complex was significantly slower than [3H]R5020. Competitive steroid binding analysis revealed that [3H]progesterone, [3H]R5020, and [3H]RU486 compete for the same site(s) in the uterine cytosol, suggesting that all three bind to the progesterone receptor (PR). Sedimentation rate analysis showed that both steroids were bound to a molecule that sediments in the 8S region. The 8S [3H]R5020 and [3H]RU486 peaks were abolished by excess radioinert progesterone, RU486, or R5020.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The glucocorticosteroid receptor (GR) has been studied in oviduct cytosol prepared from estrogen-primed, 4-week-withdrawn chicken. The equilibrium dissociation constant was 6 nM for dexamethasone, and 18 300 receptor sites/cell were measured assuming that all cells contain identical concentrations of GR. Dexamethasone, used in most studies investigating glucocorticosteroid action, was found not to be the best GR ligand. The affinities of several natural and synthetic glucocorticosteroids for GR increased in the following order: cortisol less than deoxycorticosterone less than dexamethasone less than corticosterone less than triamcinolone acetonide. The synthetic steroid RU 486 was the most specific ligand of GR (its affinity was approximately equal to 10-fold higher than that of triamcinolone acetonide), while it did not bind either to plasma transcortin (which binds dexamethasone nor, surprisingly, to progesterone receptor (PR), contrary to what occurs in mammalian species. The molybdate-stabilized, 8-S form of GR was prepared from withdrawn chick oviduct, whole chick embryo or cultured chick embryo fibroblasts (which do not contain PR), and was labeled with either [3H]dexamethasone or [3H]RU 486. The sedimentation coefficient of radioactive ligand--8-S GR complexes was shifted towards heavier forms after incubation with polyclonal (IgG-G3) or monoclonal (BF4) antibodies generated against the molybdate-stabilized, 8-S form of the chick oviduct PR. Since neither IgG-G3 nor BF4 interacted with the steroid binding 4-S form of GR, it is suggested that these antibodies recognized a non-steroid binding protein common to molybdate-stabilized, 8-S forms of GR and PR.  相似文献   

8.
The antiprogesterone and antiglucocorticoid compound RU 486 added to pregnant rabbit mammary gland explant cultures had no effect alone but significantly stimulated casein production in the presence of ovine prolactin (PRL) in a dose dependent manner. This stimulation was inhibited by progesterone (Pg) and the Pg agonist R5020. When the explants were cultured for 5 days with two changes of medium, to eliminate all steroids, and hormones added afterwards, the effect of PRL was potentiated, Pg was no longer inhibitory and RU 486 had no effect, RU 486 also could inhibit the stimulatory action of glucocorticoids added to the cultures along with PRL. The compound was able to displace [3H]dexamethasone and [3H]R 5020 from mammary gland glucocorticoid and Pg receptors respectively and proved to have a high relative binding affinity (RBA) for both receptors when compared with typical ligands for each receptor. The RBAs of RU 486 and the steroids used in this study to mammary gland glucocorticoid and Pg receptors correlated well with the ability of RU 486 to block their biological activities. These results demonstrate that RU 486 has both antiglucocorticoid and antiprogesterone activities in pregnant rabbit mammary glands as well as the existence of a strong inhibitory residual action of Pg in the gland that persists during the first 48 h of culture and that can be eliminated by RU 486 or after several days of culture with no hormones.  相似文献   

9.
The third component of C, C3, is the key opsonin of the C cascade and is produced locally within the lung by pulmonary epithelial cells, macrophages, and fibroblasts. Because glucocorticoids regulate the maturation and expression of several physiologically important genes in pulmonary epithelial cells, we examined the effects of glucocorticoids on C3 mRNA expression and C3 synthesis by the human pulmonary epithelial cell line, A549. Treatment with dexamethasone enhanced C3 production in a time- and dose-dependent fashion such that concentrations of dexamethasone greater than or equal to 0.001 microM significantly increased C3 production on day 3 of culture. Natural glucocorticoids, corticosterone, cortisol, and 11-deoxycortisol also increased C3 concentrations in A549 supernatants. Both cycloheximide and the glucocorticoid receptor antagonist, RU486, individually inhibited the effect of dexamethasone on C3 production. Northern analysis demonstrated that the steady state 5.2-kb C3 message increased in A549 cells within 10 h of treatment with dexamethasone. RU486 inhibited the effect of dexamethasone on C3 mRNA expression. The integrity of the C3 thiolester bond, as measured by [3H]iodoacetic acid titration and hemolytic assay, was not disrupted by dexamethasone. We conclude that glucocorticoids such as dexamethasone enhance the expression of C3 mRNA and increase the production of functionally active C3 by A549 cells by a mechanism that is mediated by the intracellular glucocorticoid receptor.  相似文献   

10.
Binding characteristics of synthetic steroid, mifepristone (RU38486 - also referred to as RU486), were examined in cytosol prepared from the chick oviduct and the calf uterus, and were compared with those of progesterone and synthetic progestin R5020. Unlike [3H]progesterone binding, the [3H]RU486 binding in the oviduct cytosol did not saturate at 50 nM ligand concentration. The [3H]progesterone binding could not be eliminated in the presence of excess RU486, and [3H]RU486 binding was seen to be indisplaceable upon pretreatment of the chick oviduct cytosol with a 1000-fold excess progesterone. It is apparent that the chick oviduct cytosol is endowed with two separate sets of sites which interact with progesterone and RU486 independently. Furthermore, [3H]RU486 binding in the chick oviduct cytosol remained intact when incubated for 60 min at 37°C; it exhibited a single ionic form upon elution from DEAE-Sephacel and the [3H]RU486-associated radioactivity sedimented in the 4 S region both in salt-free and 0.3 M KCl-containing 5–20% sucrose gradients. In the calf uterus cytosol, both steroids exhibited comparable binding profiles. Our results provide evidence that chick oviduct possesses distinct binding sites that accept either progesterone or RU486, but not both, as is the case in the calf uterus.  相似文献   

11.
Modulation of calf uterine progesterone receptor (PR), in relation to its binding to synthetic steroids with known agonist (R5020) and antagonist (RU486) properties, was studied in the presence of iodoacetamide (IA), N-ethylmaleimide (NEM), beta-mercaptoethanol (MER), and dithiothreitol (DTT). Pretreatment of uterine cytosol at 4 degrees C with NEM (4-10 mM) reduced the binding of [3H]RU486 to PR by 40%, but [3H] R5020 binding was completely abolished. Whereas IA (2-10 mM) treatment did not affect [3H]RU486 binding, [3H]R5020 binding was totally eliminated. DTT or MER increased the binding of both steroids slightly (15%). [3H]R5020- or [3H]RU486-receptor complexes (Rc) migrated in the 8 S region and were eliminated upon pretreatment with NEM. At 23 degrees C, DTT increased the amount of 4 S [3H]R5020-Rc, but had no effect on the [3H]RU486-Rc. In the control, [3H]RU486 binding to the 8 S PR could be competed with radioinert R5020 or RU486, but R5020 failed to compete in the presence of IA. The heat-treated [3H]R5020- and [3H]RU486-Rc showed reduced binding to DNA-cellulose in the presence of NEM and IA. The results of our study suggest that SH group modifications differentially influence the properties of mammalian PR complexed with either R5020 or RU486. In the presence of IA, the [3H]RU486-Rc remained in the 8 S form when incubated at 23 degrees C, indicating that RU486 binding causes conformational changes in PR which are distinct from those that result upon R5020 binding.  相似文献   

12.
V K Moudgil  C Hurd 《Biochemistry》1987,26(16):4993-5001
Effects of different transforming agents were examined on the sedimentation characteristics of calf uterine progesterone receptor (PR) bound to the synthetic progestin [3H]R5020 or the known progesterone antagonist [3H]RU38486 (RU486). [3H]R5020-receptor complexes [progesterone-receptor complexes (PRc)] sedimented as fast migrating 8S moieties in 8-30% linear glycerol gradients containing 0.15 M KCl and 20 mM Na2MoO4. Incubation of cytosol containing [3H]PRc at 23 degrees C for 10-60 min, or at 0 degrees C with 0.15-0.3 M KCl or 1-10 mM ATP, caused a gradual transformation of PRc to a slow sedimenting 4S form. This 8S to 4S transformation was molybdate sensitive. In contrast, the [3H]RU486-receptor complex exhibited only the 8S form. Treatment with all three activation agents caused a decrease in the 8S form but no concomitant transformation of the [3H]RU486-receptor complex into the 4S form. PR in the calf uterine cytosol incubated at 23 or at 0 degrees C with 0.3 M KCl or 10 mM ATP could be subsequently complexed with [3H]R5020 to yield the 4S form of PR. However, the cytosol PR transformed in the absence of any added ligand failed to bind [3H]RU486. Heat treatment of both [3H]R5020- and [3H]RU486-receptor complexes caused an increase in DNA-cellulose binding, although the extent of this binding was lower when RU486 was bound to receptors. An aqueous two-phase partitioning analysis revealed a significant change in the surface properties of PR following both binding to ligand and subsequent transformation. The partition coefficient (Kobsd) of the heat-transformed [3H]R5020-receptor complex increased about 5-fold over that observed with PR at 0 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
In order to understand the molecular basis for antiprogestin action, we have compared the interaction of the antiprogestin [3H]RU38, 486 (RU486) and the progestin [3H]R5020 with the progesterone receptor (PR). In both MCF-7 and T47D human breast cancer cells, we have observed marked differences in the sedimentation properties of the PR on high salt sucrose gradients: while the R5020-receptor complexes sediment at approximately 4 S (4.4 +/- 0.1 S), the RU486-receptor sediments as a prominent 6 S species as well as a 4 S species. This binding is abolished by excess unlabelled R5020, RU486 or progesterone, but is unaffected by excess unlabelled hydrocortisone or dexamethasone, indicating that both the 4 S and 6 S species represent the PR and not glucocorticoid receptor. Although the relative distribution of 4 S and 6 S forms is not altered by treatment with DNAse or RNAse, exposure to 10 mM thioglycerol or to 3 M urea results in conversion of the 6 S to the 4 S form, suggesting that disulfide bonds and hydrophobic interactions are important in maintaining the integrity of the 6 S form. These findings suggest that the 6 S antiprogestin complex is formed as a result of the interaction of PR units with each other or with a different protein. This change in receptor association state may be an important aspect of the antiprogestin activity of RU486.  相似文献   

14.
Rat-liver glucocorticoid receptor was incubated with either [3H]triamcinolone acetonide or [3H]RU 486, a well known antiglucocorticoid. Once formed, the steroid-receptor complexes were analyzed by isoelectric focusing in agarose gel slabs. A careful slicing of the receptor tracks revealed the presence of three distinct radioactive peaks focused at the following pI values: 5.3 +/- 0.2 (n = 17) and 4.4 +/- 0.1 (n = 17). All these peaks correspond with receptor isoforms as suggested by control experiments. The receptor state was analyzed after focusing by a chromatographic assay on DNA-cellulose, DEAE-trisacryl and hydroxyapatite minicolumns. The peak of pI 4.4 apparently corresponded to the non-transformed receptor and was greatly stabilized in the presence of RU 486, whereas the peaks of pI 4.8 and 5.3 were probably made of transformed receptor and meroreceptor. These results were confirmed by autoradiographic studies after isoelectric focusing of receptor molecules covalently labelled with [3H]dexamethasone mesylate. Thus, the rat-liver glucocorticoid receptor appeared to be a rather acidic protein which became less acidic after transformation by heat, displaying a pI shift which was strongly reduced in case of steroid-receptor complexes formed with the antiglucocorticoid RU 486.  相似文献   

15.
16.
D F Skafar 《Biochemistry》1991,30(45):10829-10832
The binding mechanism of the antagonist RU486 to the progesterone receptor was compared with that of the agonists progesterone and R5020. Both progesterone and RU486 bound to the receptor with a Hill coefficient of 1.2, indicating the binding of each ligand is positive cooperative. However, when each ligand was used to compete with [3H]progesterone for binding to the receptor at receptor concentrations near 8 nM, at which the receptor is likely a dimer, the competition curve for RU486 was significantly steeper than the curves for progesterone and R5020 (p less than 0.001). This indicated that a difference in the binding mechanism of RU486 and progesterone can be detected when both ligands are present. In contrast, at receptor concentrations near 1 nM, at which the receptor is likely a monomer, the competition curves for all three ligands were indistinguishable (p = 0.915). These results indicate that RU486 and agonists have different binding mechanisms for the receptor and further suggest that this difference may be related to site-site interactions within the receptor.  相似文献   

17.
Abstract

The effect of RU486, a synthetic antisteroid, on the antagonism of progesterone (Pg) and dexamethasone (Dex) against oestradiol (Oe) induced uterine growth, and on uterine oestradiol binding (type I and type II sites) was studied in ovariectomised CFY rats. Changes of hypothalamic low affinity [3H]Oe binding have also been evaluated. Inhibitory effects of Pg but not of Dex on uterine growth and type II Oe binding site induction were prevented by RU486. Antiprogestin effect of RU486 could also be demonstrated on low affinity [3H]Oe binding in hypothalami. The inhibitory effect of dexamethasone on type II Qe binding was not opposed by antisteroid, on the contrary, RU486 seemed to potentiate this effect of Dex. Evaluation of type I binding was complicated by the distorting effect of type II binding at the saturation curve. Changes of type I binding seemed to parallel those of type II binding except after Oe+Dex treatment where an increased level of uterine cytoplasmic type I sites and a simultaneous decrease of type II sites were found. Blockage of [3H]Oe binding at high RU486 concentrations was found in vitro in the uterine cytoplasmic fraction. A less pronounced effect was observed in the nuclear fraction. Possible mechanisms of the RU486 effect on type II Oe binding are discussed.  相似文献   

18.
The physicochemical properties of complexes formed between the glucocorticoid antagonist, RU38486, and the glucocorticoid receptor in rat thymus cytosol were investigated and compared with those of complexes formed with the potent agonist, triamcinolone acetonide. The equilibrium dissociation constant for the interaction of [3H]RU38486 with the molybdate-stabilized glucocorticoid receptor was lower than that for [1,2,4-3H]triamcinolone acetonide at 0 degree C but higher at 25 degrees C, suggesting that hydrophobic interactions play a major role in the binding of RU38486. Differences in equilibrium constants were reflected in corresponding differences in dissociation rate constants; association rate constants for the two steroids were similar. The rate of dissociation of [3H]RU38486 from the glucocorticoid receptor was higher in the absence of molybdate than in its presence both at 0 degree C and at 25 degrees C, suggesting that molybdate modifies the physical state of the antagonist-receptor complex, but other physical properties were similar both in the presence and in the absence of molybdate. The rate of inactivation of the unoccupied glucocorticoid receptor at 25 degrees C in the absence of molybdate was lower in phosphate buffer than in Tris-HCl buffer but the rate of dissociation of [3H]RU38486 was the same in both buffers. The binding of RU38486 afforded little, if any, protection against inactivation in either buffer; [3H]RU38486 dissociated irreversibly from the inactivated receptor at the same rate as from the non-inactivated complex but molybdate had no effect on the dissociation kinetics of the inactivated complex. It is concluded that RU38486 interacts with the ground state of the glucocorticoid receptor in a manner which neither promotes receptor transformation nor prevents receptor inactivation.  相似文献   

19.
The present study was undertaken to determine cytosol binding properties of [3H]methyltrienolone, a synthetic androgen, in comparison with [3H]dexamethasone, a synthetic glucocorticoid, under conditions of glucocorticoid excess in skeletal muscle. Male hypophysectomized rats received either seven daily subcutaneous injections of cortisone acetate (CA) (100 mg X kg-1 body wt) or the vehicle, 1% carboxymethyl cellulose. Following treatment, both [3H]dexamethasone and [3H]methyltrienolone-receptor concentrations were decreased from those in vehicle-treated rats by more than 90 and 80%, respectively, in CA-treated animals. Scatchard analysis of [3H]methyltrienolone binding in muscles of vehicle-treated animals became nonlinear at high concentrations of labeled ligand and were reanalyzed by a two-component binding model. The lower affinity, higher capacity component, which was attributed to binding of methyltrienolone to a "dexamethasone" component, disappeared in muscles of CA-treated rats and Scatchard plots were linear. Receptor concentrations of the higher affinity lower capacity "methyltrienolone" component were similar in muscles of vehicle-treated and CA-treated groups. From competition studies, the high relative specificities of glucocorticoids for [3H]methyltrienolone binding in muscles of vehicle-treated animals were markedly reduced by CA treatment. In addition, the binding specificity data also showed strong competition by progesterone and methyltrienolone for [3H]dexamethasone binding and estradiol-17 beta for [3H]methyltrienolone binding. These results demonstrate that most of the [3H]methyltrienolone binding is eliminated under in vivo conditions of glucocorticoid excess. Furthermore, the competitiveness of various steroids for receptor binding suggests that rat muscle may not contain classic (ligand-specific) glucocorticoid and androgen receptors.  相似文献   

20.
A steroid binding protein (Mr = 110,000) has previously been identified in the plasma membrane of Xenopus laevis oocytes by photoaffinity labeling with [3H]R5020. In order to further characterize this steroid receptor, the photoaffinity labeled receptor protein was solubilized with 0.1% Brij 35. The solubilized labeled receptor yielded an approximate mol. wt of 102,000 +/- 2,000 by sucrose density gradient centrifugation, suggesting that the solubilized receptor exists as a monomer. RU 486, a synthetic progestin antagonist for mammalian cytosolic receptor systems, inhibited up to 70% of [3H] R5020 photoaffinity binding to the 110,000-Dalton receptor with an IC50 of 5 microM and induced germinal vesicle breakdown (GVBD) with an EC50 of 9.0 +/- 0.6 microM. GVBD induced by RU 486 was slower than with progesterone, and RU 486 was less powerful than progesterone. Micromolar concentrations of RU 486 also potentiated GVBD induced by sub-optimal concentrations of progesterone or R5020. Furthermore, RU 486 inhibited oocyte plasma membrane adenylate cyclase with an apparent IC50 of 7.5 +/- 2.5 microM. The close correlation of the EC50 value for RU 486 induction of GVBD with the IC50 values for inhibition of [3H]R5020 photoaffinity labeling of the 110,000-Dalton receptor and inhibition of adenylate cyclase activity further supports the physiological significance of the oocyte plasma membrane steroid receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号