首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the distribution of IAA (indole-3-acetic acid) and the IAA synthetic cells in maize coleoptiles, we established immunohistochemistry of IAA using an anti-IAA-C-monoclonal antibody. We first confirmed the specificity of the antibody by comparing the amounts of endogenous free and conjugated IAA to the IAA signal obtained from the IAA antibody. Depletion of endogenous IAA showed a corresponding decrease in immuno-signal intensity and negligible cross-reactivity against IAA-related compounds, including tryptophan, indole-3-acetamide, and conjugated-IAA was observed. Immunolocalization showed that the IAA signal was intense in the approximately 1 mm region and the outer epidermis at the approximately 0.5 mm region from the top of coleoptiles treated with 1-N-naphthylphthalamic acid. By contrast, the IAA immuno-signal in the outer epidermis almost disappeared after 5-methyl-tryptophan treatment. Immunogold labeling of IAA with an anti-IAA-N-polyclonal antibody in the outer-epidermal cells showed cytoplasmic localization of free-IAA, but none in cell walls or vacuoles. These findings indicated that IAA is synthesized in the 0–2.0 mm region of maize coleoptile tips from Trp, in which the outer-epidermal cells of the 0.5 mm tip are the most active IAA synthetic cells.  相似文献   

2.
Both N-1-naphthylphthalamic acid (NPA) and methyl-2-chloro-9-hydroxyfluorene-9-carboxylic acid (CF) inhibit the polar transport of indole-3-acetic acid (IAA) and, therefore, are attractive tools for investigating IAA's role in the regulation of plant growth. Ringing an intact conifer shoot with lanolin containing NPA or CF induces the formation of compression wood above the ring. This induction has been attributed to a postulated accumulation of IAA above the application site of the IAA transport inhibitor, but the validity of this postulation has never been confirmed. Using gas chromatography-selected ion monitoring-mass spectroscopy with [13C6]IAA as an internal standard, we measured the levels of endogenous free and conjugated IAA in 1-year-old Pinus sylvestris (L.) shoots ringed with NPA or CF. The level of free IAA was dramatically decreased below the ring, indicating that the polar transport of endogenous IAA was inhibited by the treatment. However, the free IAA level above the ring, where compression wood was formed, was also slightly lower than in control shoots. The lack of IAA accumulation above the site of the IAA transport inhibitor could not be explained by an increase in IAA conjugation. Furthermore, the turnover of [2-14C]IAA, measured using high-performance liquid chromatography with on-line radioactivity monitoring, was the same in NPA-treated and control shoots. The decrease in IAA level above a NPA or CF ring is attributed to these substances being transported acropetally and interfering with polar IAA transport along the shoot. It is concluded that compression wood formation above a NPA or CF ring is not associated with an overall increase in cambial region IAA level or increased IAA turnover. Instead, we suggest that acropetally transported NPA and CF induce compression wood formation by interacting with the NPA receptor in differentiating tracheids, thereby locally increasing IAA in these cells.  相似文献   

3.
The occurrence of IAA, a plant-growth-regulating substance of the auxin group, was investigated in developing chick embryos. Paperchromatography followed by the Avena curvature test revealed the presence of a substance with auxin activity and the same Rf as IAA. This substance was identified as IAA by combined gas chromato-graphy-mass spectrometry. The amount of IAA in a unit weight of embryo was almost identical during embryo development, the total amount of IAA in an embryo increasing as it developed. The amount of IAA in the whole egg was also examined and it was found that an egg incubated for 9 days at 37°C contained a larger amount of IAA than one not incubated.  相似文献   

4.
The reaction between indole 3-acetic acid and horseradish peroxidase   总被引:7,自引:0,他引:7  
Three distinct phases of the reaction between indole 3-acetic acid (IAA) and horse-radish peroxidase (isoenzymes B and C) were observed. When 100 μm IAA was added to an aerobic solution of the 7μm enzyme at pH 5.0 the oxidation of IAA occurred after a lag time of several seconds, during which the enzyme was partially converted into peroxide Compound II. At a time when the lag time was over the conversion of the enzyme into a green hemoprotein, called P-670 suddenly occurred at a considerable speed. The oxidation of IAA was almost over at the end of the second phase. The last phase was the restoration of the free enzyme from the remaining Compound II.Ascorbate and cytochrome c peroxidase elongated the lag phase of IAA oxidation. From these inhibition experiments it was suggested that a peroxide form of IAA would react with peroxidase to form its peroxide compounds as does hydrogen peroxide and cause the oxidation of IAA. A reaction path that the enzyme is directly reduced by IAA might be involved as an initiation step but appeared to play no essential role in the oxidation of IAA at steady state.Contrary to the cases with dihydroxyfumarate and NADH, Superoxide dismutase did not inhibit the aerobic oxidation of IAA by peroxidase. IAA peroxide radical instead of superoxide anion radical was suggested to be an intermediate in the oxidation of IAA.On the basis of stoichiometric relation of reactions between IAA and peroxidase peroxide compounds a tentative scheme of P-670 formation during the oxidation of IAA was presented.  相似文献   

5.
《Phytochemistry》1987,26(5):1251-1255
An enzyme-linked immunosorbent assay (ELISA) for indole-3-acetic acid (IAA) is described which uses antibodies raised against IAA conjugated to carrier protein on the indolic ring of IAA. As little as 0.5 pmol of IAA is detectable with the ELISA. There is no significant cross-reactivity with amide conjugates of IAA and samples do not need methylation, in contrast to an ELISA using antibodies raised against carboxyl-linked IAA. Affinity chromatography on IAA-agarose was used to purify antibody preparations. Measurements of IAA levels in crown gall tumour tissue lines were made using the assay.  相似文献   

6.
We used an anti-indole acetic acid (IAA or auxin) monoclonal antibody-based immunocytochemical procedure to monitor IAA level in Arabidopsis tissues. Using immunocytochemistry and the IAA-driven beta-glucuronidase (GUS) activity of Aux/IAA promoter::GUS constructs to detect IAA distribution, we investigated the role of polar auxin transport in vascular differentiation during leaf development in Arabidopsis. We found that shoot apical cells contain high levels of IAA and that IAA decreases as leaf primordia expand. However, seedlings grown in the presence of IAA transport inhibitors showed very low IAA signal in the shoot apical meristem (SAM) and the youngest pair of leaf primordia. Older leaf primordia accumulate IAA in the leaf tip in the presence or absence of IAA transport inhibition. We propose that the IAA in the SAM and the youngest pair of leaf primordia is transported from outside sources, perhaps the cotyledons, which accumulate more IAA in the presence than in the absence of transport inhibition. The temporal and spatial pattern of IAA localization in the shoot apex indicates a change in IAA source during leaf ontogeny that would influence flow direction and, consequently, the direction of vascular differentiation. The IAA production and transport pattern suggested by our results could explain the venation pattern, and the vascular hypertrophy caused by IAA transport inhibition. An outside IAA source for the SAM supports the notion that IAA transport and procambium differentiation dictate phyllotaxy and organogenesis.  相似文献   

7.
Tuberose (Polianthes tuberosa L. cv. Double) corms at the vegetative, early floral initiation, and flower bud differentiation stages were assayed for free indole-3-acetic acid (IAA), esterified IAA, and peptidyl IAA. The corms in the vegetative stage contained higher free IAA than those from the early floral initiation stage. Free IAA in corm tissues increased 2.7-fold at flower bud differentiation as compared to the vegetative stage. In the vegetative corms, a marked promotion of leaf differentiation was recorded. In contrast, corms from the early floral initiation stage contained less free IAA, whereas esterified IAA and peptidyl IAA increased dramatically. It is concluded that the level of free IAA in vegetative corms is correlated with leaf differentiation, and that the early floral initiation stage is correlated with a reduction in free IAA and an increase in IAA conjugates in the corms. Moreover, increases in free IAA and decreases in IAA conjugates in the floral differentiation stage, as compared to the early floral initiation stage, indicates that free IAA is correlated with flower development.  相似文献   

8.
Li H  Tiwari SB  Hagen G  Guilfoyle TJ 《Plant physiology》2011,155(3):1252-1263
Auxin/indole-3-acetic acid (Aux/IAA) proteins function as repressors of auxin response gene expression when auxin concentrations in a cell are low. At elevated auxin concentrations, these repressors are destroyed via the ubiquitin-proteasome pathway, resulting in derepression/activation of auxin response genes. Most Aux/IAA repressors contain four conserved domains, with one of these being an active, portable repression domain (domain I) and a second being an auxin-dependent instability domain (domain II). Here, we have analyzed the effects of amino acid substitutions in the repression domain of selected Aux/IAA proteins. We show that stabilized versions of Aux/IAA proteins with amino acid substitutions in domain I display contrasting phenotypes when expressed in transformed Arabidopsis (Arabidopsis thaliana) plants. An alanine-for-leucine substitution in the LxLxL (where L is leucine and x is another amino acid) repression domain of IAA3, IAA6, or IAA19 confers enhanced auxin response gene expression and "high-auxin" phenotypes when expressed from the 35S or IAA19 promoter (as tested with IAA19) in transformed Arabidopsis plants. In marked contrast, a single alanine-for-leucine substitution in domain I of IAA12 or IAA17 confers repression of auxin response genes and "low-auxin" phenotypes. These results point to intrinsic differences in the repression domain(s) of IAA proteins and suggest that some IAA proteins have stronger or more complex repression domains than others.  相似文献   

9.
Alan Winter 《Planta》1966,71(3):229-239
Summary A method is described for using apical sections of Avena coleoptiles grown in the dark for 70 hours as an assay for IAA and for potential precursors of IAA. The experiments were carried out under as sterile conditions as possible.Tryptophan appeared not to act as a precursor of IAA. Tryptamine however showed a marked stimulation of growth indicating its possible conversion to IAA. Other compounds that stimulated growth and hence may be regarded as potential precursors of IAA were anthranilic acid and indole. Kynurenine and shikimic acid were among those without an effect. A hypothetical route for the biogenisis of IAA is suggested based on the findings of this work.  相似文献   

10.
A study was conducted to determine the activity of the 3-methylindole (3MI)-forming enzyme in Lactobacillus sp. strain 11201. Cells were incubated anaerobically with 17 different indolic and aromatic compounds. Indoleacetic acid (IAA), 5-hydroxyindoleacetic acid, 5-methoxy-3-indoleacetic acid, indole-3-pyruvate, or indole-3-propionic acid induced 3MI-forming activity. The highest total enzyme activity induced by IAA was observed in cells incubated with an initial concentration of 1.14 mM IAA. Peak activity of the 3MI-forming enzyme occurred 4 h after bacteria were incubated with either 0.114 or 1.14 mM IAA. Enzyme activity peaked earlier (2 h) and disappeared more rapidly at 5.7 mM IAA than at other concentrations of IAA. The effects of IAA and 3MI on the growth of Lactobacillus sp. strain 11201 and formation of 3MI from IAA also were determined. Bacterial growth and 3MI formation from IAA were reduced in medium containing exogenous 3MI. The growth depression observed in medium containing 5.7 mM IAA appears to be due to the toxicity of 3MI rather than IAA. The formation of 3MI in this ruminal Lactobacillus sp. is mediated by an inducible enzyme, and as 3MI accumulates, bacterial growth and rates of 3MI formation from IAA are reduced.  相似文献   

11.
The pool of amide-linked indole-3-acetic acid (amide IAA) in the shoot of growing etiolated seedlings of Zea mays increases between the 3rd and 5th day of germination to equal the amount of free IAA and two-thirds the amount of ester IAA. Deseeding the germinant changes the pool size of free and amide IAA in a manner suggestive of conversion of endogenous free IAA to amide IAA. Deseeding also caused an almost total disappearance of amide IAA from the root, demonstrating that the pool of amide IAA is not inert and can be actively metabolized in young Z. mays seedlings.  相似文献   

12.
13.
Indole-3-acetic acid (IAA) promotes an increase in steady-state heat production by corn (Zea mays L.) coleoptile tissue; this increase is associated with an elevation in aerobic respiration rates. A detailed time dependence of the exothermic response to IAA was obtained using flow calorimetry. The latent period and magnitude of response were evaluated as a function of IAA concentration and pH. The data indicate that more than one response may occur. The optimal change in heat production was produced by an IAA concentration of 3·10-5 M. It was initiated within 5 min after the start of the IAA treatment, and reached a magnitude in excess of 25% of the tissue's basal heat production. Concentrations of IAA greater than 1·10-4 M resulted in diminished response(s), but the effect was strongly pH dependent. Several possibilities for the increased heat production triggered by IAA are discussed.Abbreviation IAA indole-3-acetic acid  相似文献   

14.
Plots of reaction rate versus substrate concentration of the enzymatic decarboxylation of IAA yield sigmoid, rather than the usual, hyperbolic curves, suggesting that the IAA oxidase of cabbage roots is an allosteric enzyme. The quantity of this enzyme in roots is so high that the IAA concentration is likely to limit IAA degradation in intact cells. Thus, variations in the level of this enzyme seem not to be essential for the regulation of the endogenous IAA concentration. Cabbage roots contain substances that can inhibit IAA oxidase. These substances are spatially separated from IAA oxidase in intact cells, but the same inhibitors are able to reach the enzyme when added exogenously to tissue segments. The possibility that added IAA is treated by tissue segments in another manner than endogenous IAA is discussed.  相似文献   

15.
Hypaphorine, an indolic alkaloid from an ectomycorrhizal fungus is a putative antagonist of indole-3-acetic acid (IAA) known to inhibit the effect of IAA in growing roots of Eucalyptus seedling. Previously we have used horseradish peroxidase-C (HRP) as a sensitive reporter of IAA-binding to the IAA-binding domain, and reported that hypaphorine specifically inhibits the HRP-catalyzed superoxide generation coupled to oxidation of IAA [Kawano et al., Biochem. Biophys. Res. Commun. 288]. Since binding of IAA to the auxin-binding domain is the key step required for IAA oxidation by HRP, it was assumed that the inhibitory effect of hypaphorine is due to its competitive binding to the auxin-binding domain in HRP. Here, we obtained further evidence in support of our assumption that hypaphorine specifically inhibits binding of IAA to HRP. In this study, HRP arrested at the temporal inactive form known as Compound III was used as a sensitive indicator for binding of IAA to HRP. Addition of IAA to the preformed Compound III resulted in rapid decreases in absorption maxima at 415, 545, and 578 nm characteristic to Compound III, and in turn a rapid increase in absorption maximum at 670 nm representing the formation of P-670, the irreversibly inactivated form of hemoproteins, was induced. In contrast, the IAA-dependent irreversible inactivation of HRP was inhibited in the presence of hypaphorine. In addition, the mode of interaction between IAA and hypaphorine was determined to be competitive inhibition, further confirming that hypaphorine is an IAA antagonist which specifically compete with IAA in binding to the IAA-binding site in plant peroxidases.  相似文献   

16.
Indole-3-acetic acid (IAA) labeled in its carboxyl group was metabolized by tobacco leaf discs (Nicotiana tabacum L. cv. Xanthi) into three metabolites, two of which were preliminarily characterized as a peptide and an ester-conjugated IAA. Reapplication of each of the three metabolites (at 10 μM) resulted in a marked stimulation of ethylene production and decarboxylation by the leaf discs. Similarly, these three IAA metab olites could induce elongation of wheat coleoptile segments, which was accompanied by decarboxylation. Both the exogenously supplied esteric and peptidic IAA conjugates were converted by the leaf discs into the same metabolites as free IAA. (1-14C)IAA, applied to an isolated epidermis tissue, was completely metabolized to the esteric and peptidic IAA conjugates. This epidermis tissue showed much higher ethylene production rates and lower decarboxylation rates than did the whole leaf disc. The results suggest that the participation of IAA conjugates in the regulation of various physiological processes depends on the release of free IAA, which is obtained by enzymatic hydrolysis of the conjugates in the tissue. The present study demonstrates biological activity of endogenous IAA conjugates that were synthesized by tobacco leaf discs in response to exogenously supplied IAA.  相似文献   

17.
Hou ZX  Huang WD 《Planta》2005,222(4):678-687
By using an anti-indole-acetic acid (anti-IAA) monoclonal antibody and an anti-auxin-binding protein 1 (anti-ABP1) polyclonal antibody, IAA and ABP1 were immunohistochemically localized in strawberry (Fragaria ananassa Duch.) shoot apexes during floral induction. The spatial distribution patterns of endogenous IAA and ABP1 and their dynamic changes during floral induction were investigated. In addition, the affect of 1-N-naphthylphtalamic acid (NPA) on IAA distribution during floral induction was also analyzed. The results showed that IAA was present in the shoot apexes throughout the floral induction process, gradually concentrating in the shoot apical meristem (SAM). The distribution of ABP1 and its dynamic changes were similar to those of IAA. In addition, the ABP1 immune signal in SAM gradually increased as floral induction developed. On a morphological level, these results indicate both the spatial distribution and dynamic changes in endogenous IAA and ABP1 during the floral induction process. The close correlation found between IAA and ABP1 indicates that a cooperation occurs during the regulation of floral induction. The results also suggest that IAA was the significant agent for floral induction, and that SAM might be the place of the main action. Treatment with NPA during floral induction prevented the accumulation of IAA in the SAM, delayed the process of floral differentiation and induced an abnormal flower development. It is likely that IAA in the shoot apex is produced in young leaves and transported through the vascular tissues to the SAM and other places of function. Finally, an appropriate amount of IAA in the SAM and normal polar auxin transport are essential for floral induction and differentiation in strawberries.  相似文献   

18.
Degradation of Aux/IAA proteins which are triggered by the ubiquitin ligase complex containing the auxin F-box receptors (AFBs), is thought to be the primary reaction of auxin signaling. Upon auxin perception, AFBs bind domain II of Aux/IAA proteins that is conserved in most of the 29 family members in Arabidopsis. However, IAA20 and IAA30 lack domain II. Furthermore, IAA31, which forms a single clade with IAA20 and IAA30 in Aux/IAA protein family, has a partially conserved domain II, which contains an amino acid substitution that would cause a dominant mutation of Aux/IAA genes. It has been shown that the half-lives of these proteins are much longer than those of the canonical Aux/IAA proteins. We generated overexpression lines (OXs) of IAA20 , IAA30 and IAA31 by the use of cauliflower mosaic virus 35S promoter to better understand the molecular function of atypical Aux/IAA proteins in Arabidopsis. OXs of the three genes exhibited similar auxin-related aberrant phenotypes, with IAA20 OX showing the most severe defects: Some of them showed a semi-dwarf phenotype; gravitropic growth orientation was often affected in hypocotyl and root; vasculature of cotyledons was malformed; the primary root stopped growing soon after germination because of collapse of root apical meristem. IAA 20 and IAA30 were early auxin inducible, but IAA31 was not. These results showed that the wild-type genes of the three Aux/IAAs could disturb auxin physiology when ectopically overexpressed.  相似文献   

19.
The elongation growth of etiolated hypocotyl segments of lupin (Lupinus albus L.) was stimulated by acid pH (4.6 versus 6.5) and by IAA for periods of up to 4 h. After this time, the segments were unable to grow further. In the presence of an optimal IAA concentration (10 μM), acid pH increased the growth rate but had no effect on final growth. With suboptimal IAA (0.1 μM), however, acid pH increased growth in a more than additive way, suggesting a synergistic action between the two factors. This synergism may be explained by the increased IAA uptake and decarboxylation seen at an acid pH. These results reinforce the view that the effects of low pH and IAA on growth are not independent. Vanadate inhibited growth and also IAA uptake and decarboxylation. This inhibitor, therefore, probably inhibits growth not only by decreasing ATPase-mediated acidification but also by decreasing H+-dependent IAA uptake from the apoplasm. This dependence of IAA uptake on ATPase may be mediated by apoplasmic acidification. The amount of IAA decarboxylated increased when the assay conditions favored the growth of segments, indicating that IAA could be destroyed by decarboxylation during the auxin-induced growth.  相似文献   

20.
Changes in the activities of IAA oxidase, peroxidase, ascorbicacid utilization (AAU), and in the level of paramagnetic manganese(Mn2+) have been studied during kinetin-induced growth of theisolated cucumber cotyledons in light or in dark. In kinetin-treatedcotyledons exposed to light, inhibition in the level of paramagneticmanganese corresponds with an enhancement in IAA oxidase activity.The level of paramagnetic manganese shows an inverse correlationwith IAA oxidase activity. In darkness the level of Mn2+ doesnot show the same correlation with IAA oxidase activity as inthe light. Kinetin stimulates peroxidase activity both in thelight and in darkness. Enhancement of IAA oxidase activity andno corresponding change in the level of paramagnetic manganeseindicates that the oxidation of IAA in dark-grown, kinetin-treatedcotyledons is brought about by peroxidase. It appears that thephenolic cofactors required for the oxidation of manganese andIAA may be limiting in kinetin-treated cotyledons in darkness.Thus in the light, IAA oxidation seems to be brought about byperoxidase as well as manganese, whereas in darkness it is mediatedby peroxidase alone. Increase in IAA oxidase activity duringkinetin-induced growth of the isolated cotyledons is incompatiblewith the idea that increased IAA oxidase activity would limitthe availability of auxin for growth. Kinetin does not mimicthe action of light on IAA oxidase activity; on the contrary,it removes the inhibitory effect of light on IAA oxidase activityprobably through the synthesis of IAA oxidase activators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号