首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Inhibitors of porcine trypsin were prepared from aqueous extracts of the parasitic nematodes Ascaris suum (hogs) and Ascaris lumbricoides (human). In this study three experiments were performed. (1) Polyclonal antibodies were prepared against one isoform of trypsin inhibitor from each parasitic nematode. Each antibody reacted with all isoforms from itself as well as all isoforms from the other parasite. (2) Association equilibrium constants were measured by titrating host trypsins (porcine or human) with the isoforms of trypsin inhibitors from A. suum and A. lumbricoides. While three of the combinations formed tight complexes that can be precipitated, the fourth complex, A. suum trypsin inhibitor-human trypsin has a Ka that is a 300 to 1000 times weaker interaction than the three other titration pairs. (3) Live A. suum worms were incubated in isosmotic media that contained either porcine trypsin or human trypsin. A suum worms survived in porcine trypsin and in the controls but were killed and digested after exposure for 5 days in human trypsin. The first experiment suggests that the trypsin inhibitors from A. suum and A. lumbricoides have similar epitopes, while the second experiment suggests that there are differences near the reactive site of the inhibitors. The consequences of these differences are dramatically demonstrated by the third experiment in which live A. suum worms in the presence of human trypsin die and are digested but those in porcine trypsin survive. These experiments suggest that in order to parasitize a host, a nematode requires a complement of protease inhibitors that interact strongly with those host proteases that are in their environment.  相似文献   

2.
Many inhibitors of trypsin and human beta-factor XIIa have been isolated from squash and related seeds and sequenced (Wieczorek et al., Biochem. Biophys. Res. Comm. (1985) 126, 646-652). The association equilibrium constants (Ka) of several of these inhibitors have now been determined with human beta-factor XIIa using a modification of the method of Green and Work (Park et al., Fed. Proc. Fed. Am. Soc. Exp. Biol. (1984) 43, 1962). The Ka's range from 7.8 x 10(4) M-1 to 3.3 x 10(8) M-1. Two isoinhibitors from Cucurbita maxima seeds, CMTI-I and CMTI-III, differ in only a single glutamate to lysine change in the P'4 position. This results in a factor of 62 increase in the Ka of the lysine inhibitor, CMTI-III (Ka = 3.3 x 10(8) M-1). To our knowledge, this is the largest effect ever seen for a residue substitution at the P'4 position of a serine proteinase inhibitor. The result is even more surprising because beta-factor XIIa's natural substrate, Factor XI, contains Gly in the P'4 position.  相似文献   

3.
Carboxypeptidase inhibitors from Ascaris suum: the primary structure   总被引:1,自引:0,他引:1  
The carboxypeptidase A inhibitor from Ascaris suum was isolated from aqueous extracts by affinity chromatography toward immobilized carboxypeptidase A. The amino acid sequence is DQVRKCLSDT10DCTNGEKCVQ20KNKICSTIVE30IQRCEKEHFT40IPCKSNNDCQ50VWAHEKICN K60LPWGL65 . The carboxypeptidase A inhibitor is not homologous with the chymotrypsin/elastase or trypsin inhibitors from Ascaris, but shows homology in a 9-residue internal sequence with the 37/39-residue carboxypeptidase inhibitors from tomato and potato. The carboxy-terminal 5 (4) residues in the three inhibitors are similar, suggesting a common mechanism of inhibition.  相似文献   

4.
Two trypsin inhibitors, CPPTI-I and CPPTI-II of Mr 3 250 and 7 850, respectively, were isolated from resting white bush seeds. Both inhibitors are cysteine-rich proteins. In addition to trypsin, they inhibit a trypsin-like enzyme isolated from Streptomyces griseus proteinase but they do not act on chymotrypsin, kallikrein or subtilopeptidase A. The isolated inhibitors contain a lysine residue in position P1 of the reactive site.  相似文献   

5.
The reactive-site sequence of a proteinase inhibitor can be written as . . . -P3-P2-P1-P'1-P'2-P'3- . . . , where-P1-P'1-denotes the reactive site. Three semisynthetic homologues have been synthesized of the bovine trypsin-kallikrein inhibitor (Kunitz) with either arginine, phenylalanine or tryptophan in place of the reactive-site residue P1, lysine-15. These homologues correspond to gene products after mutation of the lysine 15 DNA codon to an arginine, phenylalanine or tryptophan DNA codon. Starting from native (virgin) inhibitor, reactive-site hydrolyzed, still active (modified) inhibitor was prepared by chemical and enzymic reactions. Modified inhibitor was then converted into inactive des-Lys15-inhibitor by reaction with carboxypeptidase B. Inactive des-Lys15-inhibitor was reactivated by enzymic replacement of the P1 residue according to Leary and Laskowski, Jr. The introduction of arginine was catalyzed by an inverse reaction with carboxypeptidase B, while phenylalanine or tryptophan were replaced by carboxypeptidase A. The reactivated semisynthetic inhibitors were trapped by complex formation with either trypsin or chymotrypsin. The enzyme - inhibitor complexes were subjected to kinetic-control dissociation, and the semisynthetic virgin inhibitors were isolated. The inhibitory properties of the semisynthetic inhibitors have been investigated against bovine trypsin and chymotrypsin and against porcine pancreatic kallikrein and plasmin. The homologues with either lysine or arginine in the P1 position are equally good inhibitors of trypsin, plasmin and kallikrein. The Arg-15-homologue is a slightly more effective kallikrein inhibitor than the Lys15-inhibitor. The semisynthetic phenylalanine and tryptophan homologues, however, are weak inhibitors of trypsin and still weaker inhibitors of kallikrein, but are excellent inhibitors of chymotrypsin. Their association constant with chymotrypsin is at least ten times higher than that of native Lys-15-inhibitor. A dramatic specificity change is observed with the phenylalanine and tryptophan homologues, which in contrast to the native inhibitor do not at all inhibit porcine plasmin. Thus, the nature of the P1 residue strongly influences the primary inhibitory specificity of the bovine inhibitor (Kunitz).  相似文献   

6.
Using a novel method, a monoclonal antibody was produced which can directly block the activity of an extracellular matrix-associated neurite outgrowth promoting complex (Matthew and Patterson, 1983). Presumably binding at or near the active site, this antibody recognizes a determinant consisting of heparan sulfate and a larger molecule which is likely to be laminin (Matthew et al., in preparation). The antibody has been further used to localize this determinant in adult tissues in vivo. Extracellular binding is seen at sites known to promote axon regeneration in the peripheral nervous system and is not seen in the central nervous system (Matthew et al., in preparation). In investigating how neurons may modify their environment as they grow processes, we have recently found that sensory and sympathetic neurons spontaneously release a collagenase and a plasminogen activator from their distal processes and/or growth cones (Pittman, 1985). A 43 kD irreversible inhibitor of the plasminogen activator is secreted by cardiac myocytes and is found on the surfaces of cultured neurons (Pittman, 1984). This inhibitor is also released by nonneuronal cell cultures from peripheral, but not central, nerves (Pittman, unpublished). Of interest in relation to the proteoglycan neurite outgrowth promoting complex is the finding that the 43 kD inhibitor preparation binds heparin tightly and can displace laminin from its heparin binding site (Patterson and Pittman, unpublished). Thus it is possible that the protease/inhibitor system could affect outgrowth via interaction with the neurite outgrowth promoting complex in the extracellular matrix.  相似文献   

7.
Cat and lion submandibular glands each contain a double-headed secretory proteinase inhibitor. Their amino-acid sequences were determined, and the amino-acid sequence of the inhibitor of dog submandibular glands was revised. Extensive homologies were found between these inhibitors in both domains. The trypsin-inhibiting domains of cat and lion inhibitors, however, contain a Lys residue in the reactive site in contrast to an Arg residue in the dog inhibitor. Domains I and II of cat, lion, and dog inhibitors are structurally related both to each other and to the sequenced monovalent secretory pancreatic trypsin inhibitors, Notable differences in inhibitory properties of canine and feline inhibitors are discussed with respect to sequence differences.  相似文献   

8.
Many plant proteinase inhibitors have lysine at the P1 position, presumably to avoid hydrolysis by insect trypsins. Lepidopteran trypsins appear to have adapted to resist proteinase inhibitors through increased inhibitor hydrolysis and decreased binding to inhibitor hydrophilic reactive sites. Lepidopteran digestive trypsins prefer lysine at the P1 position and have substrate binding subsites more hydrophobic than trypsins from insects in other orders. All available sequences of sensitive and inhibitor-insensitive insect trypsins were aligned with porcine trypsin, for which interactions with Kunitz and Bowman-Birk inhibitor are known. After discounting conserved positions and positions not typical of sensitive or insensitive trypsins, the following residues were considered important to insect trypsin-PI interactions (chymotrypsin numbering): 60, 94, 97, 98, 99, 188, 190, 213, 215, 217, 219, 228. These residues support the Neighbor Joining analysis tree branches separating sensitive and insensitive trypsin sequences. Primary sequences interacting with PIs are around the active site, with some forming part of the S1 (188, 217, 219 and 228) or S4 (99, 215) pockets.  相似文献   

9.
The carboxy terminal residue of human α-1-proteinase inhibitor (α-1-PI) was found to be lysine by three independent techniques. These included digestion with carboxypeptidases B and A, hydrazinolysis, and sequence determination of the carboxy terminal peptide obtained from cyanogen bromide fragmentation. This structure was found to be GLY-LYS-VAL-VAL-ASN-PRO-THR-GLN-LYS. Carboxypeptidase C digestion indicated substantial degradation of α-1-PI by endopeptidases in the enzyme preparation. These results do not support the proposal of Cohen et al (Biochemistry (1978) 17 392) that H2O18 incorporation into lysine in dissociating α-1-PI:proteinase complexes is indicative of a critical role of this residue in the reactive site of the inhibitor. We suggest that free trypsin, released from complexes, could readily activate the carboxy terminal lysine of α-1-PI, resulting in oxygen exchange with H2O18 in the medium.  相似文献   

10.
Cross-sections of muscle, intestine, and genital tract fluoresced in defined locations when live Ascaris suum adults were incubated in medium containing chymotrypsin liganded with fluorescein-5-isothiocyanate. This suggests that the protease, or portions of it, are assimilated by A. suum. A. suum chymotrypsin/elastase isoinhibitors were found in muscle sarcolemma, eggs, sperm, and intestine, and host chymotrypsin was localized in the same regions of these tissues by immunofluorescence and immunoperoxidase techniques. These experiments demonstrate that host chymotrypsin enters the parasite, that it is present in specific regions of Ascaris, and that it probably exists as an enzyme-inhibitor complex.  相似文献   

11.
The three-dimensional structure of the 56 residue polypeptide Apis mellifera chymotrypsin/cathepsin G inhibitor 1 (AMCI-1) isolated from honey bee hemolymph was calculated based on 730 experimental NMR restraints. It consists of two approximately perpendicular beta-sheets, several turns, and a long exposed loop that includes the protease binding site. The lack of extensive secondary structure features or hydrophobic core is compensated by the presence of five disulfide bridges that stabilize both the protein scaffold and the binding loop segment. A detailed analysis of the protease binding loop conformation reveals that it is similar to those found in other canonical serine protease inhibitors. The AMCI-1 structure exhibits a common fold with a novel family of inhibitors from the intestinal parasitic worm Ascaris suum. The pH-induced conformational changes in the binding loop region observed in the Ascaris inhibitor ATI are absent in AMCI-1. Similar binding site sequences and structures strongly suggest that the lack of the conformational change can be attributed to a Glu-->Gln substitution at the P1' position in AMCI-1, compared to ATI. Analysis of amide proton temperature coefficients shows very good correlation with the presence of hydrogen bond donors in the calculated AMCI-1 structure.  相似文献   

12.
Three trypsin inhibitors were isolated from summer squash (Cucurbita pepo) seeds and purified to homogeneity by fractionation with ammonium sulphate and methanol, ion-exchange chromatography and gel filtration. All three inhibitors have lysine at their active site. Two of them (II, IV) show the same isoelectric point (at pH 5.6), amino acid composition and molecular mass (3259). The third inhibitor (III) of molecular mass of 3654 and isoelectric point at 4.9 has additionally one histidine residue and two glutamic acid residues more per molecule.  相似文献   

13.
Three trypsin inhibitor fractions were found in white bush fruits (Cucurbita pepo L. var. patissonina). One of them, CPPTI-fIII, was purified to homogeneity by means of affinity and ion exchange chromatography. It is a cysteine-poor protein with an approximate Mr of 21 000. The inhibitor contains arginine at position P1 of the reactive site and inhibits bovine trypsin, hog pancreatic kallikrein and subtilisin. This inhibitor differs from the inhibitors of white bush dormant seeds, CPPTI-I and CPPTI-II, in its amino-acid composition, molecular mass, amino-acid residue at position P1 of the reactive site and inhibition spectrum.  相似文献   

14.
Two new double-headed protease inhibitors have been isolated from black-eyed peas. The isoinhibitors can be purified to homogeneity with greater than 90% recovery in a four-step procedure by means of sequential affinity chromatography on trypsin-Sepharose and chymotrypsin-Sepharose affinity columns. The isoinhibitors both have molecular weights near 8,000 and both have the same NH1-terminal residue serine. Black-eyed pea chymotrypsin and trypsin inhibitor (BEPCI) has an isoelectric point of 5.1 and inhibits trypsin and chymotrypsin simultaneously. Black-eyed pea trypsin inhibitor (BEPTI) has an isoelectric point of 6.5 and inhibits 2 molecules of trypsin simultaneously. BEPTI binds to chymotrypsin-Sepharose above pH 6 but does not inhibit chymotrypsin in the standard inhibitor assay with 10-3 M substrate. These new inhibitors are distinct from the Ventura inhibitor isolated from Serido black-eyed peas. An endogenous seed protease has been isolated from black-eyed peas by affinity chromatography on soybean inhibitor-carboxymethylcellulose affinity columns. A protease-BEPCI complex has been isolated by ion exchange chromatography. A dual physiological function of inhibition and protection of the seed protease is suggested as a plausible role of seed protease inhibitors.  相似文献   

15.
The reactive site peptide bond of the eggplant inhibitor against trypsin [EC 3.4.21.4] was identified by chemical modifications with 1,2-cyclohexanedione, 2,4,6-trinitrobenzenesulfonic acid, acetic anhydride and glyoxal, and by sequential treatments with trypsin and carboxypeptidase B [EC 3.4.12.3]. The inhibitor was significantly inactivated by chemical modifications of arginine residues, but was not affected by lysine modifications. Free arginine was released from the trypsin-modified inhibitor by carboxypeptidase B digestion, accompanied by a marked loss of inhibitory activity. A serine residue was newly exposed at the N-terminal amino acid of the inhibitor after modification with trypsin. The reactive site of the inhibitor against trypsin was concluded to be an arginylseryl bond. The inhibitor was completely inactivated by full reduction of its disulfide bonds.  相似文献   

16.
The contribution of the P1' residue at the first reactive site of peanut protease inhibitor B-III to the inhibition was analyzed by replacement of the P1' Arg(11) with other amino acids (Arg, Ser, Ala, Leu, Phe, Asp) after selective modification of the second reactive site. The Arg derivative had the same trypsin inhibitory activity as the native inhibitor (Ki = 2 X 10(-9) M). The Ser derivative inhibited more weakly (Ki = 2 X 10(-8) M). The Ala and Leu derivatives inhibited trypsin very weakly (Ki = 2 X 10(-7) M and 4 X 10(-7) M, respectively), and the Phe and Asp derivatives not at all. These results suggest that the P1' arginine residue is best for inhibitory activity at the first reactive site of B-III, although it has been suggested that a P1' serine residue at the reactive site is best for inhibitory activity of Bowman-Birk type inhibitors.  相似文献   

17.
A serine protease inhibitor, termed TsCEI, was purified from adult-stage Trichuris suis by acid precipitation, affinity chromatography (elastase-agarose), and reverse-phase HPLC. The molecular weight of TsCEI was estimated at 6.437 kDa by laser desorption mass spectrometry. TsCEI potently inhibited both chymotrypsin (K(i) = 33.4 pM) and pancreatic elastase (K(i) = 8.32 nM). Neutrophil elastase, chymase (mouse mast cell protease-1, mMCP-1), and cathepsin G were also inhibited by TsCEI, whereas trypsin, thrombin, and factor Xa were not. The cDNA-derived amino acid sequence of the mature TsCEI consisted of 58 residues including 9 cysteine residues with a molecular mass of 6.196 kDa. TsCEI displayed 48% sequence identity to a previously characterized trypsin/chymotrypsin inhibitor of T. suis, TsTCI. TsCEI showed 36% sequence identity to a protease inhibitor from the hemolymph of the honeybee Apis mellifera. Sequence similarity was also detected with the trypsin/thrombin inhibitor of the European frog Bombina bombina, the elastase isoinhibitors of the nematode Anisakis simplex, and the chymotrypsin/elastase and trypsin inhibitors of the nematode Ascaris suum. The inhibitors of T. suis, an intestinal parasite of swine, may function as components of a parasite defense mechanism by modulating intestinal mucosal mast cell-associated, protease-mediated, host immune responses.  相似文献   

18.
The mechanisms of inhibition of two novel scFv antibody inhibitors of the serine protease MT-SP1/matriptase reveal the basis of their potency and specificity. Kinetic experiments characterize the inhibitors as extremely potent inhibitors with K(I) values in the low picomolar range that compete with substrate binding in the S1 site. Alanine scanning of the loops surrounding the protease active site provides a rationale for inhibitor specificity. Each antibody binds to a number of residues flanking the active site, forming a unique three-dimensional binding epitope. Interestingly, one inhibitor binds in the active site cleft in a substrate-like manner, can be processed by MT-SP1 at low pH, and is a standard mechanism inhibitor of the protease. The mechanisms of inhibition provide a rationale for the effectiveness of these inhibitors, and suggest that the development of specific antibody-based inhibitors against individual members of closely related enzyme families is feasible, and an effective way to develop tools to tease apart complex biological processes.  相似文献   

19.
Trypsin [EC 3.4.21.4] modified (reactive site cleaved) Vicia angustifolia proteinase inhibitor was prepared at pH 3 with a catalytic amount of trypsin and purified using columns of Sephadex G-50 and DEAE-Sephadex A-25. The modified inhibitor, which still retained antitryptic activity, lost its activity upon treatment with carboxypeptidase B or citraconic anhydride. End-group analyses revealed that the carboxyl-terminal Arg and the amino-terminal Ser residues were newly exposed end-groups in the modified inhibitor. It takes a much longer incubation time (about 1 h) to exhibit the maximal inhibitory activity against trypsin. Reduction and carboxymethylation of the modified inhibitor produced two fragments on Sephadex G-50 chromatography. The smaller fragment consisted of about 32 amino acid residues and possessed a new carboxyl-terminal Arg residue. The larger fragment consisted of about 80 residues and possessed a Ser residue at its amino-terminus. These results indicate that the small fragment was derived from the amino-terminal portion of the modified inhibitor and the large fragment from the carboxyl-terminal. It is also concluded that an Arg-Ser bond is the reactive site as well as the inhibitory site of the V. angustifolia inhibitor against trypsin. The sequence around the antitryptic site exhibits high degrees of homology with other double-headed inhibitors of legume origin, such as the Bowman-Birk inhibitor, lima beam inhibitor, and the major inhibitor in chick-peas.  相似文献   

20.
Glia-derived nexin (GDN) is a 43-kDa serine protease inhibitor with neurite promoting activity in mouse neuroblastoma cells (Guenther et al., 1985). In chick sympathetic neurons, GDN but not hirudin and synthetic peptide inhibitors promoted neurite outgrowth (Zurn et al., 1988). Thus, it was considered that the protease inhibitory activity cannot account for the total biological activity of GDN. We show here that synthetic peptide inhibitors with thrombin specificity mimic GDN at similar concentrations in neuroblastoma cells. Limited proteolysis of GDN with elastase causes a cleavage between sites P1 and P2, corresponding to residues Ala-344-Arg-345 of the molecule. The resulting fragments still copurify on heparin-Sepharose, but the protease inhibitor activity of GDN and the GDN neurite promoting activity are lost. The results confirm the necessity of an intact reactive site for the biological activity of GDN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号