共查询到20条相似文献,搜索用时 11 毫秒
1.
We have partially characterized root hydrotropism and its interaction with gravitropism in maize (Zea mays L.). Roots of Golden Cross Bantam 70, which require light for orthogravitropism, showed positive hydrotropism; bending upward when placed horizontally below a hydrostimulant (moist cheesecloth) in 85% relative humidity (RH) and in total darkness. However, the light-exposed roots of Golden Cross Bantam 70 or roots of a normal maize cultivar, Burpee Snow Cross, showed positive gravitropism under the same conditions; bending downward when placed horizontally below the hydrostimulant in 85% RH. Light-exposed roots of Golden Cross Bantam 70 placed at 70° below the horizontal plane responded positively hydrotropically, but gravitropism overcame the hydrotropism when the roots were placed at 45° below the horizontal. Roots placed vertically with the tip down in 85% RH bent to the side toward the hydrostimulant in both cultivars, and light conditions did not affect the response. Such vertical roots did not respond when the humidity was maintained near saturation. These results suggest that hydrotropic and gravitropic responses interact with one another depending on the intensity of one or both factors. Removal of the approximately 1.5 millimeter root tip blocked both hydrotropic and gravitropic responses in the two cultivars. However, removal of visible root tip mucilage did not affect hydrotropism or gravitropism in either cultivar. 相似文献
2.
We examined the kinetics of electrotropic curvature in solutions of low electrolyte concentration using primary roots of maize (Zea mays L., variety Merit). When submerged in oxygenated solution across which an electric field was applied, the roots curved rapidly and strongly toward the positive electrode (anode). The strength of the electrotropic response increased and the latent period decreased with increasing field strength. At a field strength of 7.5 volts per centimeter the latent period was 6.6 minutes and curvature reached 60 degrees in about 1 hour. For electric fields greater than 10 volts per centimeter the latent period was less than 1 minute. There was no response to electric fields less than 2.8 volts per centimeter. Both electrotropism and growth were inhibited when indoleacetic acid (10 micromolar) was included in the medium. The auxin transport inhibitor pyrenoylbenzoic acid strongly inhibited electrotropism without inhibiting growth. Electrotropism was enhanced by treatments that interfere with gravitropism, e.g. decapping the roots or pretreating them with ethyleneglycol-bis-[β-ethylether]-N,N,N′,N′-tetraacetic acid. Similarly, roots of agravitropic pea (Pisum sativum, variety Ageotropum) seedlings were more responsive to electrotropic stimulation than roots of normal (variety Alaska) seedlings. The data indicate that the early steps of gravitropism and electrotropism occur by independent mechanisms. However, the motor mechanisms of the two responses may have features in common since auxin and auxin transport inhibitors reduced both gravitropism and electrotropism. 相似文献
3.
Stefano Mancuso Peter W Barlow Dieter Volkmann Frantisek Baluska 《Plant signaling & behavior》2006,1(2):52-58
The dynamic actin cytoskeleton has been proposed to be linked to gravity sensing in plants but the mechanistic understanding of these processes remains unknown. We have performed detailed pharmacological analyses of the role of the dynamic actin cytoskeleton in gravibending of maize (Zea mays) root apices. Depolymerization of actin filaments with two drugs having different mode of their actions, cytochalasin D and latrunculin B, stimulated root gravibending. By contrast, drug-induced stimulation of actin polymerization and inhibition of actin turnover, using two different agents phalloidin and jasplakinolide, compromised the root gravibending. Importantly, all these actin drugs inhibited root growth to similar extents suggesting that high actin turnover is essential for the gravity-related growth responses rather than for the general growth process. Both latrunculin B and cytochalasin D treatments inhibited root growth but restored gravibending of the decapped root apices, indicating that there is a strong potential for effective actin-mediated gravity sensing outside the cap. This elusive gravity sensing outside the root cap is dependent not only on the high rate of actin turnover but also on weakening of myosin activities, as general inhibition of myosin ATPases induced stimulation of gravibending of the decapped root apices. Collectively, these data provide evidence for the actin turnover-mediated gravity sensing outside the root cap.Key Words: actin cytoskeleton, gravisensing, graviresponding, root cap 相似文献
4.
Nick Peter; Schafer Eberhard; Hertel Rainer; Furuya Masaki 《Plant & cell physiology》1991,32(6):873-880
The antimicrotubular drug ethyl-7V-phenylcarbamate (EPC), at1 to 10 mH, strongly inhibits gravitropism in coleoptiles ofZea mays L. Under the same conditions, phototropism remainsessentially unimpaired. Propyzamide, a antimicrotubular drugspecific for plant microtubules, at 0.02 to 0.2 mM causes qualitativelyidentical results, but to a weaker extent. Immunofluores-cencedata show that even only partial elimination of cortical microtubulesin the outer epidermis is correlated with complete inhibitionof gravitropism. Phototropism can proceed to some extent evenafter complete removal of cortical microtubules. Together withprevious work the data indicate a complex role of the microtubularcytoskeleton in gravitropism: (1) late transduction of both,photo- and gravitropism and (2) early transduction of gravity,possibly by perceiving and transducing pressure or displacementof statoliths. (Received February 23, 1991; Accepted June 14, 1991) 相似文献
5.
Water diffusion in maize roots (Zea mays L., cv. Donskaya 1) was investigated with a pulsed gradient NMR using mercuric chloride as an inhibitor of water channels in cell membranes. A novel operation program was applied that allowed selective evaluation of fractional amounts of water transported through various pathways—the apoplastic, symplasmic, and transmembrane routes. The blockage of water channels with HgCl2 reduced the rates of water diffusion by a factor of 1.5–2. This effect was reversible and was removed by the addition of -mercaptoethanol. The coefficient of water diffusion changed with time elapsed after the HgCl2 treatment. The effect of water stress on the rates of water diffusion was similar to that of HgCl2. Remarkably, the water-stressed roots of maize seedlings were insensitive to the inhibitor of water channels. The results are interpreted in terms of redistribution of water flows among various routes in plant tissues. Water stress and mercuric chloride treatments decelerate the transmembrane water transport and promote water flow along the apoplastic pathway. These responses might arise from the reversible regulation of water movement along various transport pathways. 相似文献
6.
Transport of Indole-3-Acetic Acid during Gravitropism in Intact Maize Coleoptiles 总被引:7,自引:1,他引:7 下载免费PDF全文
We have investigated the transport of tritiated indole-3-acetic acid (IAA) in intact, red light-grown maize (Zea mays) coleoptiles during gravitropic induction and the subsequent development of curvature. This auxin is transported down the length of gravistimulated coleoptiles at a rate comparable to that in normal, upright plants. Transport is initially symmetrical across the coleoptile, but between 30 and 40 minutes after plants are turned horizontal a lateral redistribution of the IAA already present in the transport stream occurs. By 60 minutes after the beginning of the gravitropic stimulus, the ratio of tritiated tracer auxin in the lower half with respect to the upper half is approximately 2:1. The redistribution of growth that causes gravitropic curvature follows the IAA redistribution by 5 or 10 minutes at the minimum in most regions of the coleoptile. Immobilization of tracer auxin from the transport stream during gravitropism was not detectable in the most apical 10 millimeters. Previous reports have shown that in intact, red light-grown maize coleoptiles, endogenous auxin is limiting for growth, the tissue is linearly responsive to linearly increasing concentrations of small amounts of added auxin, and the lag time for the stimulation of straight growth by added IAA is approximately 8 or 9 minutes (TI Baskin, M Iino, PB Green, WR Briggs [1985] Plant Cell Environ 8: 595-603; TI Baskin, WR Briggs, M Iino [1986] Plant Physiol 81: 306-309). We conclude that redistribution of IAA in the transport stream occurs in maize coleoptiles during gravitropism, and is sufficient in degree and timing to be the immediate cause of gravitropic curvature. 相似文献
7.
Primary roots of Zea mays were oriented at various angles fromthe vertical ranging from 99° to 1° and their subsequentbending analysed from filmed records. The maximum rate of bendingand the time before bending commenced both varied two-fold,but showed no correlation with the initial angle of tip displacement.Roots orientated to small initial angles (< 40°) oftenovershot the vertical and proceeded to oscillate around thisorientation, whereas roots oriented to large initial angles(> 60°) often failed to achieve the vertical. Roots inthis latter group resumed bending after an indeterminate time,or did so immediately after a second displacement of their tip,showing that they were not intrinsically unable to bend. Theapparently spontaneous resumption of bending after a temporaryplagiogravitropic phase is suggested as being due to noise inthe graviperception system in the root cap. The tips of rootsgrowing vertically downwards showed oscillatory bending movementsup to 10° either side of vertical. This angle correspondsto the minimum angle of displacement which induces gravitropicbending. Only when roots were oriented 10-20° from verticaldid they begin unequivocally to show a gravitropism since atsuch angles the deflection of their tips exceeded that due totheir natural oscillation.Copyright 1993, 1999 Academic Press Gravitropism, roots, Zea mays 相似文献
8.
Dezhou Cui Dandan Wu Jie Liu Detao Li Chunyan Xu Song Li Peng Li Hua Zhang Xu Liu Chuan Jiang Liwen Wang Tingting Chen Huabang Chen Li Zhao 《PloS one》2015,10(2)
Salinity is a major abiotic stress that limits plant productivity and quality throughout the world. Roots are the sites of salt uptake. To better understand salt stress responses in maize, we performed a comparative proteomic analysis of seedling roots from the salt-tolerant genotype F63 and the salt-sensitive genotype F35 under 160 mM NaCl treatment for 2 days. Under salinity conditions, the shoot fresh weight and relative water content were significantly higher in F63 than in F35, while the osmotic potential was significantly lower and the reduction of the K+/Na+ ratio was significantly less pronounced in F63 than in F35. Using an iTRAQ approach, twenty-eight proteins showed more than 2.0- fold changes in abundance and were regarded as salt-responsive proteins. Among them, twenty-two were specifically regulated in F63 but remained constant in F35. These proteins were mainly involved in signal processing, water conservation, protein synthesis and biotic cross-tolerance, and could be the major contributors to the tolerant genotype of F63. Functional analysis of a salt-responsive protein was performed in yeast as a case study to confirm the salt-related functions of detected proteins. Taken together, the results of this study may be helpful for further elucidating salt tolerance mechanisms in maize. 相似文献
9.
以抗旱性较强的玉米品种‘鲁单50’幼苗为材料,采用等渗的离子胁迫(0.8%NaCl,-0.6 MPa)和非离子胁迫(20%PEG)进行渗透胁迫处理,从受胁迫的玉米幼苗根系中分离出63.5 kD热稳定蛋白。用水杨酸(SA)处理幼苗96 h,取材进行SDS-PAGE电泳,发现63.5 kD热稳定蛋白既可被渗透胁迫诱导,也可被SA诱导产生,且SA对非离子渗透胁迫和离子渗透胁迫下诱导的该蛋白的表达表现出不同的作用,SA对非离子渗透胁迫下该蛋白的表达有抑制作用,而对离子渗透胁迫下该蛋白的表达有促进作用。SA对非离子渗透胁迫或离子渗透胁迫 ABA处理下的该蛋白的表达都表现出促进作用。研究表明,63.5 kD热稳定蛋白受SA信号途径的调控,并且在不同条件下,SA在参与和影响代谢过程的信号途径及其对代谢调控的机理可能存在差异。 相似文献
10.
Epidermal Patterning in Seedling Roots of Eudicotyledons 总被引:2,自引:0,他引:2
Pemberton Lia M. S.; Tsai Shin-Ling; Lovell Peter H.; Harris Philip J. 《Annals of botany》2001,87(5):649-654
Three types of epidermal patterning occur in roots of angiosperms:in Type 1, all the epidermal cells can potentially produce roothairs (hair cells); in Type 2, asymmetric cell divisions produceshort cells that develop into hair cells and larger cells thatdo not (non-hair cells); and in Type 3, hair cells occur infiles separated by one to three files of non-hair cells. Inthe present study we examined the epidermal patternings of seedlingroots of 77 eudicotyledonous species from 43 families. We foundthat Type 1 patterning was the most common and no species hadType 2 patterning. Previously, Type 3 epidermal patterning hadbeen described only in the family Brassicaceae. In additionto the Brassicaceae (including the Capparaceae), we found Type3 patterning in the Brassicales families Limnanthaceae and Resedaceae,whereas the other Brassicales families we examined, Caricaceaeand Tropaeolaceae, had Type 1 patterning. We also found Type3 patterning in six families of the Caryophyllales sensu lato:Amaranthaceae, Basellaceae, Caryophyllaceae, Plumbaginaceae,Polygonaceae and Portulacaceae. However, the family Cactaceae,which is also in this order, had Type 1 patterning. Only oneother species, Nemophila maculata(Boraginaceae), had Type 3patterning; the other two species that we examined in this familyhad Type 1 patterning. Type 3 patterning thus occurs more widelyin the eudicotyledons than was previously thought. Copyright2001 Annals of Botany Company Brassicales, Caryophyllales, eudicotyledons, epidermal patterning, phylogeny, root hairs, roots, seedlings 相似文献
11.
壳聚糖对镉胁迫下玉米幼苗根系抗氧化酶活性和内源激素水平的影响 总被引:2,自引:0,他引:2
为探究壳聚糖对增强玉米幼苗抗镉胁迫能力的生理生化机制,以玉米(Zea mays L.)杂交种‘郑单958’为试验材料,采用室内Hoagland水培法,探讨外施100mg·L~(-1)壳聚糖对镉胁迫(80mg·L~(-1))不同时间(0h、24h、48h、72h和96h)下玉米幼苗根系抗氧化酶活性和内源激素水平的影响。结果显示:(1)镉胁迫显著抑制玉米幼苗根系生长,并诱导根系活性氧产生、抗氧化酶活性增加、内源激素的平衡受到破坏。(2)镉胁迫下,外施壳聚糖处理96h后根系干重提高16.1%,根系的O-·2产生速率和H2O2含量分别降低9.1%和19.2%,SOD、POD和CAT活性分别提高32.5%、20.4%和21.3%,IAA、ZR和GA含量分别增加34.4%、40.4%和42.5%,ABA含量减少19.1%,IAA/ABA、ZR/ABA和GA/ABA分别提升66.1%、73.5%和76.0%。研究表明,壳聚糖能够调控镉胁迫下玉米幼苗根系内源激素的含量及平衡,减轻胁迫对抗氧化酶系统的破坏,增强其清除活性氧的能力,从而降低镉胁迫对根系的毒害,提高玉米幼苗对镉胁迫的抵抗能力,为玉米抗逆栽培提供了理论及试验依据。 相似文献
12.
It has been proposed that hydrotropism interacts with gravitropismin seedling roots; that is, roots which are highly gravitropicshow less hydrotropism (Takahashi and Suge, 1991 PhysiologiaPlantarum 82: 24-31; Takahashi and Scott, 1993 Plant, Cell andEnvironment 16: 99-103). Here, we examine varietal differencesin the hydrotropic response and its interaction with gravitropismin wheat roots. Primary seminal roots of wheat (Triticum aestivumL.) were hydrotropically stimulated by different moisture gradientsestablished by placing wet cheesecloth and saturated solutionsof different salts in closed chambers. From equations obtainedby relative humidity (RH) at different distances from the wetcheesecloth, moisture gradients at the root-tip level were estimatedto be 0·03 to 1·84% RH mm-1, depending upon thesalt introduced into the chamber. The roots showed positivehydrotropism in response to 0·67% RH mm-1, and the responseapparently increased as the gradient was strengthened. Whenthe primary seminal roots of 12 cultivars were exposed to amoisture gradient of 1·84% RH mm-1, hydrotropic responsesignificantly differed depending upon the cultivar tested. Amongthe cultivars, the roots of Norin 11, Norin 15, Norin 117, andNorin 125 responded hydrotropically more strongly than the others.These roots, with the exception of Norin 11, showed a less vigorousresponse to gravity compared to the remaining cultivars. However,the roots of Norin 20, Norin 38, and Norin 107 were relativelyunresponsive to both a moisture gradient and to gravity. Thus,the primary seminal roots of wheat respond hydrotropically,and the responsiveness differs among cultivars. However, thevarietal difference in hydrotropic response cannot be explainedsolely by converse differences in responsiveness to gravity.Copyright1995, 1999 Academic Press Cultivar, gravitropism, hydrotropism, primary seminal roots, Triticum aestivum L., wheat 相似文献
13.
Ethylene Evolution from Maize (Zea mays L.) Seedling Roots and Shoots in Response to Mechanical Impedance 总被引:3,自引:3,他引:3 下载免费PDF全文
The effect of mechanical impedance on ethylene evolution and growth of preemergent maize (Zea mays L.) seedlings was investigated by pressurizing the growth medium in triaxial cells in a controlled environment. Pressure increased the bulk density of the medium and thus the resistance to growth. The elongation of maize primary roots and preemergent shoots was severely hindered by applied pressures as low as 10 kilopascals. Following a steep decline in elongation at low pressures, both shoots and roots responded to additional pressure in a linear manner, but shoots were more severely affected than roots at higher pressures. Radial expansion was promoted in both organs by mechanical impedance. Primary roots typically became thinner during the experimental period when grown unimpeded. In contrast, pressures as low as 25 kilopascals caused a 25% increase in root tip diameter. Shoots showed a slight enhancement of radial expansion; however, in contrast to roots, the shoots increased in diameter even when growing unimpeded. Such morphological changes were not evident until at least 3 hours after initiation of treatment. All levels of applied pressure promoted ethylene evolution as early as 1 hour after application of pressure. After 1 hour, ethylene evolution rates had increased 10, 32, 70, and 255% at 25, 50, 75, and 100 kilopascals respectively, and continued to increase linearly for at least 10 hours. When intact corn seedlings were subjected to a series of hourly cycles of pressure, followed by relaxation, ethylene production rates increased or decreased rapidly, illustrating tight coupling between mechanical impedance and tissue response. Seedlings exposed to 1 microliter of ethylene per liter showed symptoms similar to those shown by plants grown under mechanical impedance. Root diameter increased 5 times as much as the shoot diameter. Pretreatment with 10 micromolar aminoethoxyvinyl glycine plus 1 micromolar silver thiosulfate maintained ethylene production rates of impeded seedlings at basal levels and restored shoot and root extension to 84 and 90% of unimpeded values, respectively. Our results support the hypothesis that ethylene plays a pivotal role in the regulation of plant tissue response to mechanical impedance. 相似文献
14.
WEERATHAWORN PIPAT; SOLDATI ALBERTO; STAMP PETER 《Journal of experimental botany》1992,43(8):1015-1021
Establishment of maize seedlings can be difficult at low soilmoisture content. Anatomy of root metaxylem vessels may influencethe capacity for water transport and respective genotypic differencesmight be useful for selection purposes. To test this, six tropicalmaize (Zea mays L.) cultivars were grown in large PVC tubescontaining a sandy substrate at 5% (M5) and 10% (M10) moisturecontents for 2 weeks. The percentage changes in root diametersdue to M5 was similar for most cultivars but differed for mainroot types. Root diameters were not consistently related tometaxylem structure, but in a few cases, thin roots had smallerdiameter metaxylem vessels. The M5 treatment reduced the numberof late metaxylem vessels of primary roots by about 0 to 20%,while effects on nodal roots were slight. Generally, the ratioof cross-sectional areas between late and early metaxylem vesselsincreased from primary to seminal and nodal roots. Within thecultivar Tuxpefio this ratio was much reduced by M5. A few cultivarsmaintained the combined cross-sectional areas of metaxylem vesselsat M5 in some main root types, but only one cultivar could achievethis for the total of cross-sectional areas of metaxylem vessels,calculated over all root axes, by increasing the number of seminaland nodal roots. These anatomical traits seemed to be mostlyconstitutive with limited response to an actual environment,but they could be decisive for the suitability of a cultivarto an environment with frequent water shortages during seedlingestablishment. Key words: Metaxylem vessels, water stress, tropical maize 相似文献
15.
Water Transport in Isolated Maize Roots 总被引:3,自引:0,他引:3
A simple model has been devised which predicts the concentration,Cxs, of salt (e.g. KCl) in the exudate from isolated roots asa function of the salt concentration, C0s, in the medium. Thechief assumption, made in deriving the relationship betweenCxs and C05, is that the exudation of water, J, from the rootsconsists of two components (one being osmotic, Ø, inorigin and the other, Ø0, flowing in the absence of anosmotic gradient). The exudation of salt, Js, calculated asJ Cxs, was found to be dependent on C0s. Our investigationson maize roots were concerned with estimations of Lp and Øvand determinations of Cxs as a function of C0s. Satisfactoryagreement between prediction and experiment was found in thesepreliminary studies. It is considered that water movement inisolated roots can be explained by a simple osmotic model withthe additional possibility that a relatively small non-osmoticwater flow occurs. 相似文献
16.
Longitudinal Electrical Resistance of Maize Roots 总被引:2,自引:0,他引:2
Longitudinal resistances of excised roots (Rr), isolated steles(Rstels), and cortical cylinders (Roortex) of maize seedlingswere measured as a function of the KCl concentration in thebathing medium and as a function of root length. The resistanceswere found to be proportional to root length beyond 1 cm fromthe root tip. Rr was independent, while Rstels and Roortex showeda marked dependence on [KCl]. The results are analysed in termsof a passive network of parallel resistances. It is concludedthat the symplast is the major determinant of the longitudinalroot resistance. 相似文献
17.
The greening phenotypes produced by recessive mutations in a gene designated de-etiolated-2 (DET2) are described. Recessive mutations in the DET2 gene uncouple light signals from a number of light-dependent processes. det2 mutations result in dark-grown Arabidopsis thaliana seedlings with many characteristics of light-grown plants, including hypocotyl growth inhibition, cotyledon expansion, primary leaf initiation, anthocyanin accumulation, and derepression of light-regulated gene expression. In contrast to these morphological and gene expression changes, however, the chloroplast development program is not initiated in the dark in det2 mutants, suggesting that light-regulated gene expression precedes the differentiation of etioplasts to chloroplasts. det2 mutations thus reveal at least two classes of downstream light-regulated responses that differ in their timing and control mechanisms. Homozygous det2 mutations also affect photoperiodic responses in light-grown plants, including timing of flowering, dark adaptation of gene expression, and onset of leaf senescence. The phenotype of det1 det2 double mutants is additive, implying that DET1 and DET2 function in distinct pathways that affect downstream light-regulated genes. Furthermore, these pathways are not utilized solely during early seedling development but must also be required to regulate different aspects of the light developmental program during later stages of vegetative growth. 相似文献
18.
Nickel Toxicity and Distribution in Maize Roots 总被引:5,自引:0,他引:5
Seregin I. V. Kozhevnikova A. D. Kazyumina E. M. Ivanov V. B. 《Russian Journal of Plant Physiology》2003,50(5):711-717
A new histochemical method for Ni determination has been developed and employed to study the pattern of Ni distribution in plant tissues. Two-day-old seedlings of maize (Zea mays L.) were transferred onto 15, 20, 25, and 35 M Ni(NO3)2 solutions in the presence of 3 mM Ca(NO3)2, and Ni localization in shoot and root tissues was investigated at days 2 and 7 of the incubation. Following two days of incubation, Ni was found in all root tissues, and its content increased with the period of exposure and from the tip to the root base. Independent of root region and tissue, Ni content in the protoplasts exceeded that in the cell walls. Ni penetrated the endodermal barrier and accumulated in the endodermis and pericycle to the highest concentration. Ni accumulation in the pericycle restricted root branching. Ni did not affect the final cell length, and the inhibition of root growth resulted from suppressed cell division. In the shoots, Ni content was below the level discerned by the dimethylglyoximine method; we therefore conclude that maize belongs to excluder plants, with their root systems functioning as a barrier limiting heavy metal intake by aboveground organs. The pattern of Ni transport differs from that of Cd and Pb; this difference stands for specific toxic effects of Ni, including an arrest of root branching. 相似文献
19.
20.
药物诱导的玉米根尖细胞凋亡 总被引:10,自引:0,他引:10
同时应用DNA Laddering、DNA Gel Blot以及基于染色体涂片 原位末端标记技术,从染色体、细胞核和DNA不同水平对细胞毒素类药和的放线菌D、放线菌酮和秋水仙碱诱导的玉米(Zea mays L.)根尖分生组织细胞死亡作了检测。结果表明:同动物中一样,这些药物诱导的玉米根尖分生组织细胞死亡也具有DNA Ladder、染色质和细胞核浓缩等典型的调亡特征,说明这些细胞毒素类药物能够诱导植 相似文献