首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Practice makes perfect, but the neural substrates of trial-to-trial learning in motor tasks remain unclear. There is some evidence that the basal ganglia process feedback-related information to modify learning in essentially cognitive tasks , but the evidence that these key motor structures are involved in offline feedback-related improvement of performance in motor tasks is paradoxically limited. Lesion studies in adult zebra finches suggest that the avian basal ganglia are involved in the transmission or production of an error signal during song . However, patients with Huntington's disease, in which there is prominent basal ganglia dysfunction, are not impaired in error-dependent modulation of future trial performance . By directly recording from the subthalamic nucleus in patients with Parkinson's disease, we demonstrate that this nucleus processes error in trial performance at short latency. Local evoked activity is greatest in response to smallest errors and influences the programming of subsequent movements. Accordingly, motor parameters are least likely to change after the greatest evoked responses so that accurately performed trials tend to precede other accurate trials. This relationship is disrupted by electrical stimulation of the nucleus at high frequency. Thus, the human subthalamic nucleus is involved in feedback-based learning.  相似文献   

2.
Electrophysiological recordings performed in parkinsonian patients and animal models have confirmed the occurrence of alterations in firing rate and pattern of basal ganglia neurons, but the outcome of these changes in thalamo-cortical networks remains unclear. Using rats rendered parkinsonian, we investigated, at a cellular level in vivo, the electrophysiological changes induced in the pyramidal cells of the motor cortex by the dopaminergic transmission interruption and further characterized the impact of high-frequency electrical stimulation of the subthalamic nucleus, a procedure alleviating parkinsonian symptoms. We provided evidence that a lesion restricted to the substantia nigra pars compacta resulted in a marked increase in the mean firing rate and bursting pattern of pyramidal neurons of the motor cortex. These alterations were underlain by changes of the electrical membranes properties of pyramidal cells including depolarized resting membrane potential and increased input resistance. The modifications induced by the dopaminergic loss were more pronounced in cortico-striatal than in cortico-subthalamic neurons. Furthermore, subthalamic nucleus high-frequency stimulation applied at parameters alleviating parkinsonian signs regularized the firing pattern of pyramidal cells and restored their electrical membrane properties.  相似文献   

3.
The motor symptoms of Parkinson's disease are associated with abnormal, correlated, low frequency, rhythmic burst activity in the subthalamic nucleus and connected nuclei. Research into the mechanisms controlling the pattern of subthalamic activity has intensified because therapies that manipulate the pattern of subthalamic activity, such as deep brain stimulation and levodopa administration, improve motor function in Parkinson's disease. Recent findings suggest that dopamine denervation of the striatum and extrastriatal basal ganglia profoundly alters the transmission and integration of glutamatergic cortical and GABAergic pallidal inputs to subthalamic neurons, leading to pathological activity that resonates throughout the basal ganglia and wider motor system.  相似文献   

4.
Nigrostriatal dopaminergic denervation is associated with complex changes in the functional and neurochemical anatomy of the basal ganglia. The excitatory neurotransmitter glutamate mediates neural signaling at crucial points of this circuitry, and glutamate receptors are differentially distributed in the basal ganglia. Available evidence suggests that the glutamatergic corticostriatal and subthalamofugal pathways become overactive after nigrostriatal dopamine depletion. In this study, we have analyzed the regulation of the GluR1 subunit of the a-amino-3-hydroxy-5-methyl-4-isoxazole propionate glutamate receptor in the basal ganglia of primates following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopamine denervation. The dopamine denervation resulted in distinct alterations in GluR1 distribution: (1) GluR1 protein expression was markedly increased in caudate and putamen, and this was most pronounced in the striosomes; (2) GluR1 protein was altered minimally in subthalamic nucleus; (3) expression of GluR1 was down-regulated in the globus pallidus by 63% and in the substantia nigra by 57%. The down-regulation of GluR1 expression in the output nuclei of the basal ganglia, the internal segment of the globus pallidus and the substantia nigra pars reticulata, may be a compensation for the overactive glutamatergic input from subthalamic nucleus, which arises after striatal dopamine denervation. Our results indicate that the glutamatergic system undergoes regulatory changes in response to altered basal ganglia activity in a primate model of Parkinson's disease. Targeted manipulation of the glutamatergic system may be a viable approach to the symptomatic treatment of Parkinson's disease.  相似文献   

5.
Microinjections of the GABA antagonist, bicuculline, where shown to selectively activate subthalamic neurons in the rat. Stimulation of subthalamic efferent pathways increased the neuronal discharge in the pallidal complex and pars reticulata of the substantia nigra. Most nigral dopaminergic neurons displayed a slight decrease in firing rate. According to these results, which are more coherent than those obtained through electrical stimulation, the subthalamic nucleus may be considered a source of tonic activation of the two output structures of the basal ganglia viz, pars reticulata of the substantia nigra and entopeduncular nucleus.  相似文献   

6.
A possible mechanism of involvement of the subthalamic nucleus (STN) in movement disorders evoked by dopamine deficit is suggested. Multifunctional role of the STN is based on following reasons. Various STN cells participate in the cortico-basal ganglia-thalamocortical loop and in the basal ganglia-pedunculopontine-basal ganglia loop. Complexity of neural circuits is determined by functional heterogeneity of neurons in the nuclei, reciprocally connected with the STN, as well as by opposite modulation of activity of these neurons by dopamine due to activation of different types of pre- and postsynaptic receptors. Dopamine influences activity of STN neurons directly, through pre- and postsynaptic receptors. It is assumed that high-frequency stimulation of the STN can reduce or eliminate Parkinsonian symptoms not only owing to inhibition of activity of GABAergic neurons in the output basal ganglia nuclei, projected into the thalamus or pedunculopontine nucleus, but also due to excitation of glutamatergic or cholinergic neurons in the output nuclei, and due to potentiation of excitatory inputs to preserved dopaminergic neurons and subsequent rise in dopamine concentration.  相似文献   

7.
Altered glutamatergic neurotransmission and neuronal metabolic dysfunction appear to be central to the pathophysiology of Parkinson’s disease (PD). The substantia nigra pars compacta—the area where the primary pathological lesion is located—is particularly exposed to oxidative stress and toxic and metabolic insults. A reduced capacity to cope with metabolic demands, possibly related to impaired mitochondrial function, may render nigral neurons highly vulnerable to the effects of glutamate, which acts as a neurotoxin in the presence of impaired cellular energy metabolism. In this way, glutamate may participate in the pathogenesis of PD. Degeneration of dopamine nigral neurons is followed by striatal dopaminergic denervation, which causes a cascade of functional modifications in the activity of basal ganglia nuclei. As an excitatory neurotransmitter, glutamate plays a pivotal role in normal basal ganglia circuitry. With nigrostriatal dopaminergic depletion, the glutamatergic projections from subthalamic nucleus to the basal ganglia output nuclei become overactive and there are regulatory changes in glutamate receptors in these regions. There is also evidence of increased glutamatergic activity in the striatum. In animal models, blockade of glutamate receptors ameliorates the motor manifestations of PD. Therefore, it appears that abnormal patterns of glutamatergic neurotransmission are important in the symptoms of PD. The involvement of the glutamatergic system in the pathogenesis and symptomatology of PD provides potential new targets for therapeutic intervention in this neuro-degenerative disorder.  相似文献   

8.
 Anatomical, neurophysiological, and neurochemical evidence supports the notion of parallel basal ganglia–thalamocortical motor systems. We developed a neural network model for the functioning of these systems during normal and parkinsonian movement. Parkinson’s disease (PD), which results predominantly from nigrostriatal pathway damage, is used as a window to examine basal ganglia function. Simulations of dopamine depletion produce motor impairments consistent with motor deficits observed in PD that suggest the basal ganglia play a role in motor initiation and execution, and sequencing of motor programs. Stereotaxic lesions in the model’s globus pallidus and subthalamic nucleus suggest that these lesions, although reducing some PD symptoms, may constrain the repertoire of available movements. It is proposed that paradoxical observations of basal ganglia responses reported in the literature may result from regional functional neuronal specialization, and the non-uniform distributions of neurochemicals in the basal ganglia. It is hypothesized that dopamine depletion produces smaller-than-normal pallidothalamic gating signals that prevent rescalability of these signals to control variable movement speed, and that in PD can produce smaller-than-normal movement amplitudes. Received: 1 September 1994/Accepted in revised form: 16 May 1995  相似文献   

9.
In Parkinson's disease, nigrostriatal denervation leads to an overactivity of the subthalamic nucleus and its target areas, which is responsible of the clinical manifestations of the disease. Because the subthalamic nucleus uses glutamate as neurotransmitter and is innervated by glutamatergic fibers, pharmacological blockade of glutamate transmission might be expected to restore the cascade of neurochemical changes induced by a dopaminergic denervation within the basal ganglia. To test this hypothesis, two types of glutamate antagonists, the NMDA receptor antagonist MK-801 and the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor antagonist LY293558, were administered systemically, either alone or in combination with L-DOPA, in rats with a unilateral 6-hydroxydopamine lesion of the nigrostriatal dopamine pathway. The effect of treatment was assessed neurochemically by analyzing at the cellular level the functional activity of basal ganglia output structures and the subthalamic nucleus using the expression levels of the mRNAs coding for glutamic acid decarboxylase and cytochrome oxidase, respectively, as molecular markers of neuronal activity. The present study shows that treatment with glutamate antagonists, and particularly with AMPA antagonists, alone or in combination with L-DOPA, reverses the overactivity of the subthalamic nucleus and its target areas induced by nigrostriatal denervation. These results furnish the neurochemical basis for the potential use of glutamate antagonists as therapeutic agents in Parkinson's disease.  相似文献   

10.
The levels of CB1 cannabinoid receptors in the basal ganglia are the highest in the brain, comparable to the levels of dopamine receptors, a major transmitter in the basal ganglia. This localization of receptors is consistent with the profound effects on motor function exerted by cannabinoids. The output nuclei of the basal ganglia, the globus pallidus (GP) and substantia nigra reticulata (SNr), apparently lack intrinsic cannabinoid receptors. Rather, the receptors are located on afferent terminals, the striatum being the major source. Cannabinoids blocked the inhibitory action of the striatal input in the SNr. Furthermore, cannabinoids blocked the excitatory effect of stimulation of the subthalamic input to the SNr revealing, along with data from in situ hybridization studies, that this input is another likely source of cannabinoid receptors to the SNr. Similar actions of cannabinoids were observed in the GP. Behavioral studies further revealed that the action of cannabinoids differs depending upon which input to the output nuclei of the basal ganglia is active. The inhibitory striatal input is quiescent and the cannabinoid action is observable only upon stimulation of the striatum, while the noticeable effect of cannabinoids under basal conditions would be on the tonically active subthalamic input. These data suggest that the recently discovered endogenous cannabinergic system exerts a major modulatory action in the basal ganglia by its ability to block both the major excitatory and inhibitory inputs to the SNr and GP.  相似文献   

11.
In this article, I point out that simple one-phase models of the role of the basal ganglia in action selection have a problem. Furthermore, I suggest a solution with major implications for the organization of the action-selection and motor systems. In current models, the striatum evaluates multiple potential actions by adding biases based on previous conditioning. These biases may arise in both the direct (bias for) and indirect (bias against) pathways. Together, these biases influence which action is ultimately chosen. For efficient conditioning to occur, a positive outcome must selectively strengthen the striatal bias for the chosen action (via a dopaminergic mechanism). This is problematic, however, because all potential action choices have influenced firing patterns in striatal cells during the selection process; it is therefore unclear how the synapses that represent the chosen plan could be selectively strengthened. I suggest a simple solution in which the striatum has two functional phases. In the first phase, the basal ganglia provide biases for multiple potential actions (using both the direct and indirect pathways), leading to the choice of a single action in the cortex. In the second phase, an efference copy of the chosen action is sent to the striatum, where it contributes to the establishment of the eligibility trace for that action. This trace, when acted on by subsequent dopaminergic reinforcement, leads to specific strengthening of the bias only for the chosen action. Consistent with this model, recordings show post-choice imposition onto the striatum of signals corresponding to the chosen action. The existence of dual phases of basal ganglia function implies that decisions about action choice are sent to the motor system in a discontinuous manner. This would not be problematic if the motor system also operated discontinuously. I will review evidence suggesting that this is the case, notably that action is organized by approximately 10 Hz oscillations.  相似文献   

12.
The major anatomical characteristics of the main axis of the basal ganglia are: (1) Numerical reduction in the number of neurons across layers of the feed-forward network, (2) lateral inhibitory connections within the layers, and (3) neuro-modulatory effects of dopamine and acetylcholine, both on the basal ganglia neurons and on the efficacy of information transmission along the basal ganglia axis. We recorded the simultaneous activity of neurons in the output stages of the basal ganglia as well as the activity of dopaminergic and cholinergic neurons during the performance of a probability decision-making task. We found that the functional messages of the cholinergic and dopaminergic neurons differ, and that the cholinergic message is less specific than that of the dopaminergic neurons. The output stage of the basal ganglia showed uncorrelated neuronal activity. We conclude that despite the huge numerical reduction from the cortex to the output nuclei of the basal ganglia, the activity of these nuclei represents an optimally compressed (uncorrelated) version of distinctive features of cortical information.  相似文献   

13.
After more than a century of work concentrating on the motor functions of the basal ganglia, new ideas have emerged, suggesting that the basal ganglia also have major functions in relation to learning habits and acquiring motor skills. We review the evidence supporting the role of the striatum in optimizing behavior by refining action selection and in shaping habits and skills as a modulator of motor repertoires. These findings challenge the notion that striatal learning processes are limited to the motor domain. The learning mechanisms supported by striatal circuitry generalize to other domains, including cognitive skills and emotion-related patterns of action.The nuclei and interconnections of the basal ganglia are widely recognized for modulating motor behavior. Whether measured at the neuronal or regional level, the activities of neurons in the basal ganglia correlate with many movement parameters, particularly those that influence the vigor of an action, such as force and velocity. Pathology within different basal ganglia circuits predictably leads to either hypokinetic or hyperkinetic movement disorders. In parallel, however, the basal ganglia, and especially the striatum, are now widely recognized as being engaged in activity related to learning. Interactions between the dopamine-containing neurons of the midbrain and their targets in the striatum are critical to this function. A fundamental question is how these two capacities—(motor behavior and reinforcement-based learning)—relate to each other and what role the striatum and other basal ganglia nuclei have in forming new behavioral repertoires. Here, we consider relevant physiological properties of the striatum by contrasting two common forms of adaptation found in all mammals: the acquisition of behavioral habits and physical skills.Without resorting to technical definitions, we all have an intuition of what habits and skills are. Tying one’s shoes after putting them on is something we consider a habit—part of a behavioral routine. The capacity to tie the laces properly is a skill. Habits and skills have many common features. Habits are consistent behaviors triggered by appropriate events (typically, but not always, external stimuli) occurring within particular contexts. Physical skills are changes in a physical repertoire: new combinations of movements that lead to new capacities for goal-directed action. Both habits and skills can leverage reward-based learning, particularly during their initial acquisition. In either instance, after sufficient experience, the need for reward becomes lower and lower. With sufficient practice, both lead to “automaticity” and a resilience against competing actions that might lead to unlearning.  相似文献   

14.
The buccal ganglia of the snail, Helisoma trivolvis, contain an intrinsic system of dopamine-containing neurons (Trimble, Barker, and Bullard, 1983). Dopamine, when bath applied to the isolated buccal ganglia, activates patterned motor output in a dose-dependent fashion. Haloperidol blocks the activating effect of dopamine, but the similar activation evoked by serotonin is not blocked by haloperidol. We suggest that there are two separate mechanisms for activating patterned motor output from the buccal ganglia. One is serotonergic, emanating from identified cerebral ganglion cells (Granzow and Kater, 1977), while the other is dopaminergic, involving neurons intrinsic to the buccal ganglia.  相似文献   

15.

Objective

There is clearly a necessity to identify novel non-dopaminergic mechanisms as new therapeutic targets for Parkinson''s disease (PD). Among these, the soluble guanylyl cyclase (sGC)-cGMP signaling cascade is emerging as a promising candidate for second messenger-based therapies for the amelioration of PD symptoms. In the present study, we examined the utility of the selective sGC inhibitor 1H-[1], [2], [4] oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) for reversing basal ganglia dysfunction and akinesia in animal models of PD.

Methods

The utility of the selective sGC inhibitor ODQ for reversing biochemical, electrophysiological, histochemical, and behavioral correlates of experimental PD was performed in 6-OHDA-lesioned rats and mice chronically treated with MPTP.

Results

We found that one systemic administration of ODQ is sufficient to reverse the characteristic elevations in striatal cGMP levels, striatal output neuron activity, and metabolic activity in the subthalamic nucleus observed in 6-OHDA-lesioned rats. The latter outcome was reproduced after intrastriatal infusion of ODQ. Systemic administration of ODQ was also effective in improving deficits in forelimb akinesia induced by 6-OHDA and MPTP.

Interpretation

Pharmacological inhibition of the sGC-cGMP signaling pathway is a promising non-dopaminergic treatment strategy for restoring basal ganglia dysfunction and attenuating motor symptoms associated with PD.  相似文献   

16.
《Journal of Physiology》2013,107(3):219-229
Dysfunction of the dopaminergic system leads to motor, cognitive, and motivational symptoms in brain disorders such as Parkinson’s disease. The basal ganglia (BG) are involved in sensorimotor learning and receive a strong dopaminergic signal, shown to play an important role in social interactions. The function of the dopaminergic input to the BG in the integration of social cues during sensorimotor learning remains however largely unexplored. Songbirds use learned vocalizations to communicate during courtship and aggressive behaviors. Like language learning in humans, song learning strongly depends on social interactions. In songbirds, a specialized BG–thalamo-cortical loop devoted to song is particularly tractable for elucidating the signals carried by dopamine in the BG, and the function of dopamine signaling in mediating social cues during skill learning and execution. Here, I review experimental findings uncovering the physiological effects and function of the dopaminergic signal in the songbird BG, in light of our knowledge of the BG–dopamine interactions in mammals. Interestingly, the compact nature of the striato-pallidal circuits in birds led to new insight on the physiological effects of the dopaminergic input on the BG network as a whole. In singing birds, D1-like receptor agonist and antagonist can modulate the spectral variability of syllables bi-directionally, suggesting that social context-dependent changes in spectral variability are triggered by dopaminergic input through D1-like receptors. As variability is crucial for exploration during motor learning, but must be reduced after learning to optimize performance, I propose that, the dopaminergic input to the BG could be responsible for the social-dependent regulation of the exploration/exploitation balance in birdsong, and possibly in learned skills in other vertebrates.  相似文献   

17.
The subthalamic nucleus and the directly adjacent substantia nigra are small and important structures in the basal ganglia. Functional magnetic resonance imaging studies have shown that the subthalamic nucleus and substantia nigra are selectively involved in response inhibition, conflict processing, and adjusting global and selective response thresholds. However, imaging these nuclei is complex, because they are in such close proximity, they can vary in location, and are very small relative to the resolution of most fMRI sequences. Here, we investigated the consistency in localization of these nuclei in BOLD fMRI studies, comparing reported coordinates with probabilistic atlas maps of young human participants derived from ultra-high resolution 7T MRI scanning. We show that the fMRI signal reported in previous studies is likely not unequivocally arising from the subthalamic nucleus but represents a mixture of subthalamic nucleus, substantia nigra, and surrounding tissue. Using a simulation study, we also tested to what extent spatial smoothing, often used in fMRI preprocessing pipelines, influences the mixture of BOLD signals. We propose concrete steps how to analyze fMRI BOLD data to allow inferences about the functional role of small subcortical nuclei like the subthalamic nucleus and substantia nigra.  相似文献   

18.
Neurotoxic doses of methamphetamine (METH) are known to cause depletions in striatal dopamine (DA) tissue content. However, the effects of METH-induced insults on dopaminergic neurotransmission are not fully understood. Here, we employed fast-scan cyclic voltammetry at a carbon-fiber microelectrode in the anesthetized rat striatum to assess the effects of a neurotoxic regimen of METH on phasic and tonic modes of dopaminergic signaling and underlying mechanisms of DA release and uptake. Extracellular DA was electrically evoked by stimulation of the medial forebrain bundle mimicking tonic and phasic firing patterns for dopaminergic cells and was monitored simultaneously in both the dorsomedial and dorsolateral striatum. Kinetic analysis of evoked recordings determined parameters describing DA release and uptake. Striatal DA tissue content was quantified by high performance liquid chromatography with electrochemical detection. METH-pretreatment (four doses of 7.5 or 10.0 mg/kg s.c.) induced DA depletions of ~ 40% on average, which are reported in both striatal subregions. METH pre-treatment significantly decreased the amplitude of signals evoked by phasic, but not tonic, stimulation. Parameters for DA release and uptake were also similarly reduced by ~ 40%, consistent with effects on evoked phasic-like responses and DA tissue content. Taken together, these results suggest that METH-pretreatment selectively diminishes phasic, but not tonic, dopaminergic signaling in the dorsal striatum.  相似文献   

19.
Recordings from the basal ganglia’s subthalamic nucleus are acquired via microelectrodes immediately prior to the application of Deep Brain Stimulation (DBS) treatment for Parkinson’s Disease (PD) to assist in the selection of the final point for the implantation of the DBS electrode. The acquired recordings reveal a persistent characteristic beta band peak in the power spectral density function of the Local Field Potential (LFP) signals. This peak is considered to lie at the core of the causality–effect relationships of the parkinsonian pathophysiology. Based on LFPs acquired from human subjects during DBS for PD, we constructed a computational model of the basal ganglia on the population level that generates LFPs to identify the critical pathophysiological alterations that lead to the expression of the beta band peak. To this end, we used experimental data reporting that the strengths of the synaptic connections are modified under dopamine depletion. The hypothesis that the altered dopaminergic modulation may affect both the amplitude and the time course of the postsynaptic potentials is validated by the model. The results suggest a pivotal role of both of these parameters to the pathophysiology of PD.  相似文献   

20.
Parkinson's disease is caused by the progressive loss of dopamine innervation to the basal ganglia and is commonly treated with the dopamine precursor, L-DOPA. Prolonged administration of L-DOPA results in the development of severe motor complications, or dyskinesia, which seriously hamper its clinical use. Recent evidence indicates that L-DOPA-induced dyskinesia (LID) is associated with persistent activation of the mammalian target of rapamycin complex 1 (mTORC1) in the medium spiny neurons (MSNs) of the striatum, the main component of the basal ganglia. This phenomenon is secondary to the development of a strong sensitization at the level of dopamine D1 receptors, which are abundantly expressed in a subset of MSNs. Such sensitization confers to dopaminergic drugs (including L-DOPA) the ability to activate the extracellular signal-regulated protein kinases 1/2, which, in turn promote mTORC1 signaling. Using a mouse model of LID, we recently showed that administration of the allosteric mTORC1 inhibitor, rapamycin, reduces dyskinesia. This finding is discussed with respect to underlying mechanisms and potential significance for the development of future therapeutic interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号