首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The [PSI(+)] nonsense-suppressor determinant of Saccharomyces cerevisiae results from the ability of Sup35 (eRF3) translation termination factor to undergo prion-like aggregation [1]. Although this process is autocatalytic, in vivo it depends on the chaperone Hsp104, whose lack or overexpression can cure [PSI(+)] [2]. Overproduction of the chaperone protein Ssb1 increased the [PSI(+)] curing by excess Hsp104, although it had no effect on its own, and excess chaperone protein Ssa1 protected [PSI(+)] against Hsp104 [3,4]. We used an artificial [PSI(+)(PS)] based on the Sup35 prion-forming domain from yeast Pichia methanolica [5] to find other prion-curing factors. Both [PSI(+)(PS)] and [PSI(+)] have prion 'strains', differing in their suppressor efficiency and mitotic stability. We show that [PSI(+)(PS)] and a 'weak' strain of [PSI(+)] can be cured by overexpression of chaperones Ssa1, Ssb1 and Ydj1. The ability of different chaperones to cure [PSI(+)(PS)] showed significant prion strain specificity, which could be related to variation in Sup35 prion structure. Our results imply that homologs of these chaperones may be active against mammalian prion and amyloid diseases.  相似文献   

2.
[PSI(+)] is a prion isoform of the yeast release factor Sup35. In some assays, the cytosolic chaperones Ssa1 and Ssb1/2 of the Hsp70 family were previously shown to exhibit "pro-[PSI(+)]" and "anti-[PSI(+)]" effects, respectively. Here, it is demonstrated for the first time that excess Ssa1 increases de novo formation of [PSI(+)] and that pro-[PSI(+)] effects of Ssa1 are shared by all other Ssa proteins. Experiments with chimeric constructs show that the peptide-binding domain is a major determinant of differences in the effects of Ssa and Ssb proteins on [PSI(+)]. Surprisingly, overproduction of either chaperone increases loss of [PSI(+)] when Sup35 is simultaneously overproduced. Excess Ssa increases both the average size of prion polymers and the proportion of monomeric Sup35 protein. Both in vivo and in vitro experiments uncover direct physical interactions between Sup35 and Hsp70 proteins. The proposed model postulates that Ssa stimulates prion formation and polymer growth by stabilizing misfolded proteins, which serve as substrates for prion conversion. In the case of very large prion aggregates, further increase in size may lead to the loss of prion activity. In contrast, Ssb either stimulates refolding into nonprion conformation or targets misfolded proteins for degradation, in this way counteracting prion formation and propagation.  相似文献   

3.
Shorter J  Lindquist S 《The EMBO journal》2008,27(20):2712-2724
Self-templating amyloid forms of Sup35 constitute the yeast prion [PSI(+)]. How the protein-remodelling factor, Hsp104, collaborates with other chaperones to regulate [PSI(+)] inheritance remains poorly delineated. Here, we report how the Ssa and Ssb components of the Hsp70 chaperone system directly affect Sup35 prionogenesis and cooperate with Hsp104. We identify the ribosome-associated Ssb1:Zuo1:Ssz1 complex as a potent antagonist of Sup35 prionogenesis. The Hsp40 chaperones, Sis1 and Ydj1, preferentially interact with Sup35 oligomers and fibres compared with monomers, and facilitate Ssa1 and Ssb1 binding. Various Hsp70:Hsp40 pairs block prion nucleation by disassembling molten oligomers and binding mature oligomers. By binding fibres, Hsp70:Hsp40 pairs occlude prion recognition elements and inhibit seeded assembly. These inhibitory activities are partially relieved by the nucleotide exchange factor, Fes1. Low levels of Hsp104 stimulate prionogenesis and alleviate inhibition by some Hsp70:Hsp40 pairs. At high concentrations, Hsp104 eliminates Sup35 prions. This activity is reduced when Ssa1, or enhanced when Ssb1, is incorporated into nascent prions. These findings illuminate several facets of the chaperone interplay that underpins [PSI(+)] inheritance.  相似文献   

4.
Propagation of the yeast protein-based non-Mendelian element [PSI], a prion-like form of the release factor Sup35, was shown to be regulated by the interplay between chaperone proteins Hsp104 and Hsp70. While overproduction of Hsp104 protein cures cells of [PSI], overproduction of the Ssa1 protein of the Hsp70 family protects [PSI] from the curing effect of Hsp104. Here we demonstrate that another protein of the Hsp70 family, Ssb, previously implicated in nascent polypeptide folding and protein turnover, exhibits effects on [PSI] which are opposite those of Ssa. Ssb overproduction increases, while Ssb depletion decreases, [PSI] curing by the overproduced Hsp104. Both spontaneous [PSI] formation and [PSI] induction by overproduction of the homologous or heterologous Sup35 protein are increased significantly in the strain lacking Ssb. This is the first example when inactivation of an unrelated cellular protein facilitates prion formation. Ssb is therefore playing a role in protein-based inheritance, which is analogous to the role played by the products of mutator genes in nucleic acid-based inheritance. Ssb depletion also decreases toxicity of the overproduced Sup35 and causes extreme sensitivity to the [PSI]-curing chemical agent guanidine hydrochloride. Our data demonstrate that various members of the yeast Hsp70 family have diverged from each other in regard to their roles in prion propagation and suggest that Ssb could serve as a proofreading component of the enzymatic system, which prevents formation of prion aggregates.  相似文献   

5.
The cytosolic chaperone network of Saccharomyces cerevisiae is intimately associated with the emergence and maintenance of prion traits. Recently, the Hsp110 protein, Sse1, has been identified as a nucleotide exchange factor (NEF) for both cytosolic Hsp70 chaperone family members, Ssa1 and Ssb1. We have investigated the role of Sse1 in the de novo formation and propagation of [PSI(+)], the prion form of the translation termination factor, Sup35. As observed by others, we find that Sse1 is essential for efficient prion propagation. Our results suggest that the NEF activity is required for maintaining sufficient levels of substrate-free Ssa1. However, Sse1 exhibits an additional NEF-independent activity; it stimulates in vitro nucleation of Sup35NM, the prion domain of Sup35. We also observe that high levels of Sse1, but not of an unrelated NEF, very potently inhibit Hsp104-mediated curing of [PSI(+)]. Taken together, these results suggest a chaperone-like activity of Sse1 that assists in stabilization of early folding intermediates of the Sup35 prion conformation. This activity is not essential for prion formation under conditions of Sup35 overproduction, however, it may be relevant for spontaneous [PSI(+)] formation as well as for protection of the prion trait upon physiological Hsp104 induction.  相似文献   

6.
The [URE3] and [PSI(+)] prions are infectious amyloid forms of Ure2p and Sup35p. Several chaperones influence prion propagation: Hsp104p overproduction destabilizes [PSI(+)], whereas [URE3] is sensitive to excess of Ssa1p or Ydj1p. Here, we show that overproduction of the chaperone, Sse1p, can efficiently cure [URE3]. Sse1p and Fes1p are nucleotide exchange factors for Ssa1p. Interestingly, deletion of either SSE1 or FES1 completely blocked [URE3] propagation. In addition, deletion of SSE1 also interfered with [PSI(+)] propagation.  相似文献   

7.
The yeast [PSI+] determinant is related to formation of large prion-like aggregates of the conformationally altered Sup35 protein. Here, we show that these aggregates are composed of small Sup35 prion polymers and associated proteins. In contrast to other protein complexes of yeast lysates, but similarly to amyloid fibers, these polymers are insoluble in SDS at room temperature. The polymers on average are about 30-fold smaller than the aggregates and comprise from 8 to 50 Sup35 monomers. The size of polymers is characteristic of a given [PSI+] variant and differs between the variants. Blocked expression of Hsp104 chaperone causes gradual increase in the size of prion polymers, while inactivation of Hsp104 by guanidine HCl completely stops their fragmentation, which shows indispensability of Hsp104 for this process.  相似文献   

8.
[PSI(+)] yeast, containing the misfolded amyloid conformation of Sup35 prion, is cured by inactivation of Hsp104. There has been controversy as to whether inactivation of Hsp104 by guanidine treatment or by overexpression of the dominant negative Hsp104 mutant, Hsp104-2KT, cures [PSI(+)] by the same mechanism- inhibition of the severing of the prion seeds. Using live cell imaging of Sup35-GFP, overexpression of Hsp104-2KT caused the foci to increase in size, then decrease in number, and finally disappear when the cells were cured, similar to that observed in cells cured by depletion of Hsp104. In contrast, guanidine initially caused an increase in foci size but then the foci disappeared before the cells were cured. By starving the yeast to make the foci visible in cells grown with guanidine, the number of cells with foci was found to correlate exactly with the number of [PSI(+)] cells, regardless of the curing method. Therefore, the fluorescent foci are the prion seeds required for maintenance of [PSI(+)] and inactivation of Hsp104 cures [PSI(+)] by preventing severing of the prion seeds. During curing with guanidine, the reduction in seed size is an Hsp104-dependent effect that cannot be explained by limited severing of the seeds. Instead, in the presence of guanidine, Hsp104 retains an activity that trims or reduces the size of the prion seeds by releasing Sup35 molecules that are unable to form new prion seeds. This Hsp104 activity may also occur in propagating yeast.  相似文献   

9.
Jung G  Jones G  Wegrzyn RD  Masison DC 《Genetics》2000,156(2):559-570
[PSI(+)] is a prion (infectious protein) of Sup35p, a subunit of the Saccharomyces cerevisiae translation termination factor. We isolated a dominant allele, SSA1-21, of a gene encoding an Hsp70 chaperone that impairs [PSI(+)] mitotic stability and weakens allosuppression caused by [PSI(+)]. While [PSI(+)] stability is normal in strains lacking SSA1, SSA2, or both, SSA1-21 strains with a deletion of SSA2 cannot propagate [PSI(+)]. SSA1-21 [PSI(+)] strains are hypersensitive to curing of [PSI(+)] by guanidine-hydrochloride and partially cured of [PSI(+)] by rapid induction of the heat-shock response but not by growth at 37 degrees. The number of inheritable [PSI(+)] particles is significantly reduced in SSA1-21 cells. SSA1-21 effects on [PSI(+)] appear to be independent of Hsp104, another stress-inducible protein chaperone known to be involved in [PSI(+)] propagation. We propose that cytosolic Hsp70 is important for the formation of Sup35p polymers characteristic of [PSI(+)] from preexisting material and that Ssa1-21p both lacks and interferes with this activity. We further demonstrate that the negative effect of heat stress on [PSI(+)] phenotype directly correlates with solubility of Sup35p and find that in wild-type strains the presence of [PSI(+)] causes a stress that elevates basal expression of Hsp104 and SSA1.  相似文献   

10.
The yeast [PSI(+)], [URE3], and [PIN(+)] genetic elements are prion forms of Sup35p, Ure2p, and Rnq1p, respectively. Overexpression of Sup35p, Ure2p, or Rnq1p leads to increased de novo appearance of [PSI(+)], [URE3], and [PIN(+)], respectively. This inducible appearance of [PSI(+)] was shown to be dependent on the presence of [PIN(+)] or [URE3] or overexpression of other yeast proteins that have stretches of polar residues similar to the prion-determining domains of the known prion proteins. In a similar manner, [PSI(+)] and [URE3] facilitate the appearance of [PIN(+)]. In contrast to these positive interactions, here we find that in the presence of [PIN(+)], [PSI(+)] and [URE3] repressed each other's propagation and de novo appearance. Elevated expression of Hsp104 and Hsp70 (Ssa2p) had little effect on these interactions, ruling out competition between the two prions for limiting amounts of these protein chaperones. In contrast, we find that constitutive overexpression of SSA1 but not SSA2 cured cells of [URE3], uncovering a specific interaction between Ssa1p and [URE3] and a functional distinction between these nearly identical Hsp70 isoforms. We also find that Hsp104 abundance, which critically affects [PSI(+)] propagation, is elevated when [URE3] is present. Our results are consistent with the notion that proteins that have a propensity to form prions may interact with heterologous prions but, as we now show, in a negative manner. Our data also suggest that differences in how [PSI(+)] and [URE3] interact with Hsp104 and Hsp70 may contribute to their antagonistic interactions.  相似文献   

11.
Overproduced fusions of Sup35 or its prion domain with green fluorescent protein (GFP) have previously been shown to form frequent dots in [PSI(+)] cells. Rare foci seen in [psi(-)] cells were hypothesized to indicate the de novo induction of [PSI(+)] caused by the overproduced prion domain. Here, we describe novel ring-type aggregates that also appear in [psi(-)] cultures upon Sup35 overproduction and show directly that dot and ring aggregates only appear in cells that have become [PSI(+)]. The formation of either type of aggregate requires [PIN(+)], an element needed for the induction of [PSI(+)]. Although aggregates are visible predominantly in stationary-phase cultures, [PSI(+)] induction starts in exponential phase, suggesting that much smaller aggregates can also propagate [PSI(+)]. Such small aggregates are probably present in [PSI(+)] cells and, upon Sup35-GFP overproduction, facilitate the frequent formation of dot aggregates, but only the occasional appearance of ring aggregates. In contrast, rings are very frequent when [PSI(+)] cultures, including those lacking [PIN(+)], are grown in the presence of GuHCl or excess Hsp104 while overexpressing Sup35-GFP. Thus, intermediates formed during [PSI(+)] curing seem to facilitate ring formation. Surprisingly, GuHCl and excess Hsp104, which are known to promote loss of [PSI(+)], did not prevent the de novo induction of [PSI(+)] by excess Sup35 in [psi(-)][PIN(+)] strains.  相似文献   

12.
13.
Jones GW  Masison DC 《Genetics》2003,163(2):495-506
We previously described an Hsp70 mutant (Ssa1-21p), altered in a conserved residue (L483W), that dominantly impairs yeast [PSI(+)] prion propagation without affecting growth. We generated new SSA1 mutations that impaired [PSI(+)] propagation and second-site mutations in SSA1-21 that restored normal propagation. Effects of mutations on growth did not correlate with [PSI(+)] phenotype, revealing differences in Hsp70 function required for growth and [PSI(+)] propagation and suggesting that Hsp70 interacts differently with [PSI(+)] prion aggregates than with other cellular substrates. Complementary suppression of altered activity between forward and suppressing mutations suggests that mutations that impair [PSI(+)] affect a similar Hsp70 function and that suppressing mutations similarly overcome this effect. All new mutations that impaired [PSI(+)] propagation were located in the ATPase domain. Locations and homology of several suppressing substitutions suggest that they weaken Hsp70's substrate-trapping conformation, implying that impairment of [PSI(+)] by forward mutations is due to altered ability of the ATPase domain to regulate substrate binding. Other suppressing mutations are in residues important for interactions with Hsp40 or TPR-containing cochaperones, suggesting that such interactions are necessary for the impairment of [PSI(+)] propagation caused by mutant Ssa1p.  相似文献   

14.
Expression of huntingtin fragments with 103 glutamines (HttQ103) is toxic in yeast containing either the [PIN(+)] prion, which is the amyloid form of Rnq1, or [PSI(+)] prion, which is the amyloid form of Sup35. We find that HttQP103, which has a polyproline region at the C-terminal end of the polyQ repeat region, is significantly more toxic in [PSI(+)] yeast than in [PIN(+)], even though HttQP103 formed multiple aggregates in both [PSI(+)] and [PIN(+)] yeast. This toxicity was only observed in the strong [PSI(+)] variant, not the weak [PSI(+)] variant, which has more soluble Sup35 present than the strong variant. Furthermore, expression of the MC domains of Sup35, which retains the C-terminal domain of Sup35, but lacks the N-terminal prion domain, almost completely rescued HttQP103 toxicity, but was less effective in rescuing HttQ103 toxicity. Therefore, the toxicity of HttQP103 in yeast containing the [PSI(+)] prion is primarily due to sequestration of the essential protein, Sup35.  相似文献   

15.
The protein Sup35 from Saccharomyces cerevisiae possesses prion properties. In vivo, a high molecular weight form of Sup35p is associated to the [PSI+] factor. The continued propagation of [PSI+] is highly dependent on the expression levels of molecular chaperones from the Hsp100, 70 and 40 families; however, so far, their role in this process is unclear. We have developed a reproducible in vitro system to study the effects of molecular chaperones on the assembly of full-length Sup35p. We show that Hsp104p greatly stimulates the assembly of Sup35p into fibrils, whereas Ydj1p has inhibitory effect. Hsp82p, Ssa1p and Sis1p, individually, do not affect assembly. In contrast, Ssa1p together with either of its Hsp40 cochaperones blocks Sup35p polymerization. Furthermore, Ssa1p and Ydj1p or Sis1p can counteract the stimulatory activity of Hsp104p, by forming complexes with Sup35p oligomers, in an ATP-dependent manner. Our observations reveal the functional differences between Hsp104p and the Hsp70-40 systems in the assembly of Sup35p into fibrils and bring new insight into the mechanism by which molecular chaperones influence the propagation of [PSI+].  相似文献   

16.
The cytoplasmic [PSI(+)] element of budding yeast represents the prion conformation of translation release factor Sup35. Much interest lies in understanding how prions are able to generate variation in isogenic strains. Recent observations suggest that a single prion domain, PrD, is able to adopt several conformations that account for prion strains. We report novel PrD variants of Sup35 that convert weak [PSI(+)] to strong [PSI(+)], and vice versa, upon transmission from wild-type Sup35. During the transmission from wild-type Sup35 to variant Sup35s, no conformational changes were detected by proteolytic fingerprinting and the original [PSI(+)] strain was remembered upon return to wild-type Sup35. These findings suggest that during transmission to variant Sup35s, the [PSI(+)] phenotype is variable while the original conformation is remembered. A mechanism of "conformational memory" to remember specific [PSI(+)] conformations during transmission is proposed.  相似文献   

17.
Striking similarities between cytoskeletal assembly and the "nucleated polymerization" model of prion propagation suggest that similar or overlapping sets of proteins may assist in both processes. We show that the C-terminal domain of the yeast cytoskeletal assembly protein Sla1 (Sla1C) specifically interacts with the N-terminal prion-forming domain (Sup35N) of the yeast release factor Sup35 (eRF3) in the two-hybrid system. Sla1C and several other Sup35N-interacting proteins also exhibit two-hybrid interactions with the poly-Gln-expanded N-proximal fragment of human huntingtin, which promotes Huntington disease-associated aggregation. The Sup35N-Sla1C interaction is inhibited by Sup35N alterations that make Sup35 unable to propagate the [PSI(+)] state and by the absence of the chaperone protein Hsp104, which is essential for [PSI] propagation. In a Sla1(-) background, [PSI] curing by dimethylsulfoxide or excess Hsp104 is increased, while translational readthrough and de novo [PSI] formation induced by excess Sup35 or Sup35N are decreased. These data show that, in agreement with the proposed function of Sla1 during cytoskeletal formation, Sla1 assists in [PSI] formation and propagation, but is not required for these processes. Sla1(-) strains are sensitive to some translational inhibitors, and some sup35 mutants, obtained in a Sla1(-) background, are sensitive to Sla1, suggesting that the interaction between Sla1 and Sup35 proteins may play a role in the normal function of the translational apparatus. We hypothesize that Sup35N is involved in regulatory interactions with intracellular structural networks, and [PSI] prion may be formed as a by-product of this process.  相似文献   

18.
The frequency with which the yeast [PSI(+)] prion form of Sup35 arises de novo is controlled by a number of genetic and environmental factors. We have previously shown that in cells lacking the antioxidant peroxiredoxin proteins Tsa1 and Tsa2, the frequency of de novo formation of [PSI(+)] is greatly elevated. We show here that Tsa1/Tsa2 also function to suppress the formation of the [PIN(+)] prion form of Rnq1. However, although oxidative stress increases the de novo formation of both [PIN(+)] and [PSI(+)], it does not overcome the requirement of cells being [PIN(+)] to form the [PSI(+)] prion. We use an anti-methionine sulfoxide antibody to show that methionine oxidation is elevated in Sup35 during oxidative stress conditions. Abrogating Sup35 methionine oxidation by overexpressing methionine sulfoxide reductase (MSRA) prevents [PSI(+)] formation, indicating that Sup35 oxidation may underlie the switch from a soluble to an aggregated form of Sup35. In contrast, we were unable to detect methionine oxidation of Rnq1, and MSRA overexpression did not affect [PIN(+)] formation in a tsa1 tsa2 mutant. The molecular basis of how yeast and mammalian prions form infectious amyloid-like structures de novo is poorly understood. Our data suggest a causal link between Sup35 protein oxidation and de novo [PSI(+)] prion formation.  相似文献   

19.
The Saccharomyces cerevisiae [PSI(+)] prion is believed to be a self-propagating cytoplasmic amyloid. Earlier characterization of HSP70 (SSA1) mutations suggested that [PSI(+)] propagation is impaired by alterations that enhance Ssa1p's substrate binding. This impairment is overcome by second-site mutations in Ssa1p's conserved C-terminal motif (GPTVEEVD), which mediates interactions with tetratricopeptide repeat (TPR) cochaperones. Sti1p, a TPR cochaperone homolog of mammalian Hop1 (Hsp70/90 organizing protein), activates Ssa1p ATPase, which promotes substrate binding by Ssa1p. Here we find that in SSA1-21 cells depletion of Sti1p improved [PSI(+)] propagation, while excess Sti1p weakened it. In contrast, depletion of Fes1p, a nucleotide exchange factor for Ssa1p that facilitates substrate release, weakened [PSI(+)] propagation, while overproducing Fes1p improved it. Therefore, alterations of Hsp70 cochaperones that promote or prolong Hsp70 substrate binding impair [PSI(+)] propagation. We also find that the GPTVEEVD motif is important for physical interaction with Hsp40 (Ydj1p), another Hsp70 cochaperone that promotes substrate binding but is dispensable for viability. We further find that depleting Cpr7p, an Hsp90 TPR cochaperone and CyP-40 cyclophilin homolog, improved [PSI(+)] propagation in SSA1 mutants. Although Cpr7p and Sti1p are Hsp90 cochaperones, we provide evidence that Hsp90 is not involved in [PSI(+)] propagation, suggesting that Sti1p and Cpr7p functionally interact with Hsp70 independently of Hsp90.  相似文献   

20.
Kirkland PA  Reidy M  Masison DC 《Genetics》2011,188(3):565-577
Replication of amyloid-based yeast prions [PSI(+)], [URE3], and [PIN(+)] depends on the protein disaggregation machinery that includes Hsp104, Hsp70, and Hsp40 molecular chaperones. Yet, overexpressing Hsp104 cures cells of [PSI(+)] prions. An Hsp70 mutant (Ssa1-21p) antagonizes propagation of [PSI(+)] in a manner resembling elevated Hsp104. The major cytosolic Hsp40 Sis1p is the only Hsp40 required for replication of these prions, but its role in [PSI(+)] curing is unknown. Here we find that all nonessential functional regions of Sis1p are dispensable for [PSI(+)] propagation, suggesting that other Hsp40's might provide Hsp40 functions required for [PSI(+)] replication. Conversely, several Sis1p functions were important for promoting antiprion effects of both Ssa1-21p and Hsp104, which implies a link between the antiprion effects of these chaperones and suggests that Sis1p is a specific Hsp40 important for [PSI(+)] curing. These contrasting findings suggest that the functions of Hsp104 that are important for propagation and elimination of [PSI(+)] are either distinct or specified by different Hsp40's. This work also uncovered a growth inhibition caused by [PSI(+)] when certain functions of Sis1p were absent, suggesting that Sis1p protects cells from cytotoxicity caused by [PSI(+)] prions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号