首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The epithelium of rat small intestine was radioautographed to examine whether RNA is synthesized by the salvage pathway as shown after [3H]uridine injection or by the de novo pathway as shown after [3H]orotic acid injection. The two modes of RNA synthesis were thus investigated during the migration of columnar cells from crypt base to villus top, and the rate of synthesis was assessed by counting silver grains over the nucleolus and nucleoplasm at six levels along the duodenal epithelium--that is, in the base, mid, and top regions of the crypts and in the base, mid, and top regions of the villi. Concomitant biochemical analyses established that, after injection of either [5-3H]uridine or [5-3H]orotic acid: (a) buffered glutaraldehyde fixative was as effective as perchloric acid or trichloracetic acid in insolubilizing the nucleic acids of rat small intestine; (b) a major fraction of the nucleic acid label was in RNA, that is, 91% after [3H]uridine and 72% after [3H]orotic acid, with the rest in DNA; and (c) a substantial fraction of the RNA label was in poly A+ RNA (presumed to be messenger RNA). In radioautographs of duodenum prepared after [3H] uridine injection, the count of silver grains was high over nucleolus and nucleoplasm in crypt base cells and gradually decreased at the upper levels up to the villus base. In the rest of the villus, the grain count over the nucleolus was negligible, while over the nucleoplasm it was low but significant. After [3H]-orotic acid injection, the number of silver grains over the nucleolus was negligible at all levels, whereas over the nucleoplasm the number was low in crypt cells, but high in villus cells with a peak in mid villus. The interpretation is that, except for a small amount of label incorporated into DNA from either precursor by crypt cells, the bulk of the label is incorporated into RNA as follows. In the crypts, cells make almost exclusive use of uridine, that is, of the salvage pathway, for the synthesis of ribosomal RNA in the nucleolus and of messenger and transfer RNA in the nucleoplasm. However, when cells pass from crypt to villus, they mainly utilize orotic acid--i.e., the de novo pathway--for the synthesis of messenger and transfer RNA within the nucleoplasm.  相似文献   

2.
The present experiments using Amoeba proteus as a single cell model show that DNA synthesis continues during and after exposure of S phase cell to N-methyl-N'-nitrosourethane (MNU). At sublethal dose levels which caused long division delays, division and growth abnormalities and mutations, the amount of [3h] thymidine ([3h]Tdr) incorporated was decreased by 20-30%; at dose levels which killed all S phase cells it was inhibited by up to 90%. There was a direct correlation between the dose of MNU used and the degree of inhibition of [3H]Tdr incorporated. The effect was rapid, mainly taking place within 20 min of treatment. Amoeba heterokaryons (HKs) were used to examine the rate of DNA synthesis of treated and untreated nuclei in the same cytoplasm, i.e. where the nuclei would have the same [h]tdr intake, the same thymidine kinase (TK) activity and the same endogenous precursor pools. Direct comparison of the nuclear DNA synthetic activity in this way revealed less difference between treated and untreated nuclei than comparisons made using the nuclear grain counts from treated and untreated amoebae. This suggested that much of the decrease in [3H]Tdr incorporation by MNU-treated S phase cells was due to a change in the cytoplasm and/or the cell membrane, rather than to nuclear damage. Thus MNU-treated nuclei were able to synthesize DNA at a near normal rate when they could draw on the resources of untreated cytoplasm, while the rate of DNA synthesis of control nuclei decreased when they occupied cytoplasm which had been exposed to high doses of MNU. These studies suggest that nuclear sites of damage were only involved when lethal doses of MNU had been used.  相似文献   

3.
The near ultraviolet and visible light (VL) impinging at an intensity of 2-5 x 10(2) J s-1 m-2 for 2-5 h kills the mitotic and the early S-phase (0- to 15-min-old) amoebae. At the mid- and late S-period only a fraction of cells are killed by VL and G2 phase cells are quite resistant. Amoebae of all cell cycle stages show a delay in the first mitotic division. DNA synthesis, as measured by [3H]thymidine incorporation, is depressed in the VL-exposed early-S amoebae. A concurrent but temporary inhibition in [3H]leucine incorporation also occurs in these cells. However, no significant change in [3H]uridine incorporation has been found. To localize the site of lethal damage, nuclear transplantation studies were undertaken between the control amoebae and the amoebae treated with VL. The nucleus of a VL-exposed early S-phase cell recovers when transplanted immediately after VL exposure into an enucleate G2 cytoplasm but dies if grafted into an enucleat S-phase cytoplasm. The therapeutic effect of the G2 cytoplasm, although at a lower level, is also evident even when the treated early S-phase nucleus is implanted 20 h later, but not after 48 h, into the G2 cytoplasm. The amoeba cytoplasm shows resistance to VL-irradiation, can accept a control nucleus from any cell cycle stage, and function normally. The G2 nucleus also remains apparently unaffected to VL exposure and can survive when it is transfered to the control cytoplasm of any cell-cycle phase. All these findings are discussed in the light of the possible existence of a repair system against VL-induced damage in the G2-phase amoeba.  相似文献   

4.
Abstract: We have investigated the mechanism of inhibition of RNA synthesis by methyl mercury (MeHg) in isolated neonatal rat cerebellar cells. Each of the three component steps involved in the incorporation of exogenous [3H]uridine into cellular RNA was examined separately in whole-cell and/or subcellular preparations. Nuclear RNA polymerase activity was measured in preparations containing both free nuclei and whole cells. Incorporation of [3H]UTP into nuclear RNA was found to be unimpaired at concentrations of MeHg that inhibited whole-cell incorporation of [3H]uridine by > 75%. Cellular uptake of [3H]uridine was assayed in cerebellar cells treated with KCN to deplete ATP levels and block subsequent phosphorylation reactions of transported uridine. Uptake activity under these conditions was unaffected by MeHg. Measurement of intracellular phosphorylation of [3H]uridine indicated that inhibition of this activity closely paralleled that of RNA synthesis. Quantitation of individual uridine nucleotides by polyethyleneimine-cellulose TLC revealed reduced levels of UTP and UDP whereas levels of UMP were elevated, suggesting that impairment of phosphorylation was not the result of cellular ATP depletion but, more likely, a direct effect on phosphouridine kinase enzymes. This mechanism of MeHg-induced inhibition of RNA synthesis was confirmed by assays of uridine phosphorylation using cell-free extracts in which exogenous ATP was supplied.  相似文献   

5.
Poxvirus replication is inhibited by streptovaricin. The most readily observed effect is the inhibition of incorporation of [3H]uridine into viral mRNA, suggesting an inhibition of RNA synthesis. Streptovaricin also inhibits the incorporation of [3H]uridine into cellular RNA but not as severely as viral RNA. On the other hand, [3H]uridine incorporation into the RNA of Semliki Forest virus (SFV), which contains a positive strand RNA genome, does not seem to be inhibited by streptovaricin. The inhibitory effect of streptovaricin is completely reversible after removal of the inhibitor. In addition to inhibiting RNA synthesis, streptovaricin also may inhibit the methylation of cellular RNA. Viral RNA is stable in the presence of streptovaricin.  相似文献   

6.
Hybridizable ribonucleic acid of rat brain   总被引:5,自引:4,他引:1       下载免费PDF全文
1. Cerebral RNA of adult and newborn rats was labelled in vivo by intracervical injection of [5-3H]uridine or [32P]phosphate. Hepatic RNA of similar animals was labelled by intraperitoneal administration of [6-14C]orotic acid. Nuclear and cytoplasmic fractions were isolated and purified by procedures involving extraction with phenol and repeated precipitation with ethanol. 2. The fraction of pulse-labelled RNA from cerebral nuclei that hybridized to homologous DNA exhibited a wide range of turnover values and was heterogeneous in sucrose density gradients. 3. Base composition of the hybridizable RNA was similar to that of the total pulse-labelled material; both were DNA-like. 4. Pulse-labelled cerebral nuclear RNA hybridized to a greater extent than cytoplasmic RNA for at least a week after administration of labelled precursor. This finding suggested that cerebral nuclei contained a hybridizable component that was not transferred to cytoplasm. 5. The rates of decay of the hybridizable fractions of cerebral nuclei and cytoplasm were faster in the newborn animal than in the adult. Presumably a larger proportion of labile messenger RNA molecules was present in the immature brain. 6. Cerebral nuclear and cytoplasmic RNA fractions from newborn or adult rats, labelled either in vivo for periods varying from 4min. to 7 days or in vitro by exposure to [3H]-dimethyl sulphate, uniformly hybridized more effectively than the corresponding hepatic preparation. These data suggested that a larger proportion of RNA synthesis was oriented towards messenger RNA formation in brain than in liver.  相似文献   

7.
Urinary proteins from human leukemic patients have been found to alter quantitatively macromolecular synthesis in primary mouse bone marrow cultures. Urinary protein-stimulated incorporation of [3H]uridine into RNA was found after 1 day of culture. Increased levels of adenine phosphoribosyltransferase and lysozyme were demonstrable at 3 and 5 days, respectively, with urinary protein-supplemented cultures. The incorporation of 3H-labeled deoxynucleosides into DNA was higher in the presence of urinary proteins after 2 days of culture. The rate of incorporation of [3H]deoxyuridine into DNA was strongly inhibited by 10(-5) M Methotrexate and 10(-6) M 5-fluorodeoxyuridine, however, the effect of urinary proteins on incorporation of [3H]uridine into RNA and lysozyme accumulation were not inhibited. Urinary proteins also stimulated the formation of "colonies" (groups of at least 30 cells) in media containing methylcellulose. This latter phenomenon was also not inhibited by 10(-5) M Methotrexate or 10(-6) M 5-fluorodeoxyuridine. The results of these studies are consistent with the postulate that in the presence of human urinary proteins, mouse bone marrow cells in culture proceed to a phenotype characteristic of circulating peripheral white cells.  相似文献   

8.
The incorporation of [(3)H]uridine into RNA was studied quantitatively (by incorporation of [(3)H]uridine into acid-precipitable material) and qualitatively (by phenol extraction and electrophoretic separation of RNA in polyacrylamide gels) in preparations enriched in primary spermatocytes, obtained from testes of rats 26 or 32 days old. The rate of incorporation of [(3)H]uridine into RNA of isolated spermatocytes was constant during the first 8h of incubation, after which it decreased, but the decreased rate of incorporation was not reflected in a marked change in electrophoretic profiles of labelled RNA. In isolated spermatocytes, [(3)H]uridine was incorporated mainly into heterogeneous RNA with a low electrophoretic mobility. Most of this RNA was labile, as shown when further RNA synthesis was inhibited with actinomycin D. Spermatocytes in vivo also synthesized heterogeneous RNA with a low electrophoretic mobility. A low rate of incorporation of [(3)H]uridine into rRNA of isolated spermatocytes was observed. The cleavage of 32S precursor rRNA to 28S rRNA was probably retarded in spermatocytes in vitro as well as in vivo. RNA synthesis by preparations enriched in early spermatids or Sertoli cells was qualitatatively different from RNA synthesis by the spermatocyte preparations. It is concluded that isolated primary spermatocytes maintain a specific pattern of RNA synthesis, which resembles RNA synthesis in spermatocytes in vivo. Therefore isolated spermatocytes of the rat can be used for studying the possible regulation of RNA synthesis during the meiotic prophase.  相似文献   

9.
More [3H]uridine was incorporated into RNA of SV40-infected than into uninfected cells 31 h after infection. When the specific activity of the uridine triphosphate pools in infected and uninfected cells was equated by the addition of appropriate amounts of exogenous unlabelled uridine, no difference in the rate of [3H]uridine incorporation into RNA was observed. Although no difference in [3H]uridine entry or phosphorylation was demonstrable, the apparently smaller pools of endogenous RNA precursors in infected cells resulted in less isotope dilution and thus to synthesis of uridine triphosphate and RNA of higher specific activity.  相似文献   

10.
Antibody molecules directed against RNA polymerase I, the enzyme responsible for rRNA synthesis, were introduced into rat hepatoma cells by red cell-mediated microinjection. Access of the antibodies to the nucleolus, the site of rRNA synthesis, was facilitated by microinjecting mitotic cells. Using indirect immunofluorescence, anti-RNA polymerase I immunoglobulins, but not control immunoglobulins, were found localized in the nucleoli of microinjected cells. To assess whether intracellular antibodies could alter RNA synthesis, cultures were labeled with [3H] uridine at various times after microinjection. Reduction in RNA synthesis, relative to cells microinjected with non-immune immunoglobulins, was observed within three hours. These results demonstrate that antibodies introduced into the cytoplasm of mitotic cells via red cell-mediated microinjection have free access to nuclear components and that they remain functional within the nuclei of living cells.  相似文献   

11.
RNA synthesis in rat cerebral hemispheres at 1, 5, and 10 days of age and the relative contribution brought by neuronal and glial nuclei to RNA synthesis was investigated. The experiments were carried out both in vivo (by i.p. injection of [3H]uridine) and in vitro (either by incubation of tissue slices with [3H]uridine or by determination of RNA polymerase activities). The labeling of RNA decreases from 1 to 10 days of age both in vivo and in vitro; the decrease is of the same extent in neuronal and glial nuclei. RNA polymerase activity Mg2+-dependent does not change significantly from 1 to 10 days of age either in total, in neuronal, or in glial nuclei, whereas the Mn2+-dependent activity increases significantly over the same developmental period studied. The significance of RNA polymerase assay as an index of in vivo RNA synthesis is discussed.  相似文献   

12.
Abstract— Intraperitoneal injection into white mice of the same amount of radioactivity (0.5 mCi) of [3H]uridine and [3H]lysine demonstrated by autoradiography that there was a much greater labelling of nerve cells from lysine than from uridine. For uridine, the choroid plexus cell nuclei gave maximal labelling within 1 h, with a decrease after 6 h. The plexus nuclei of lysine-injected animals gave almost the same amount of labelling during the experimental period of 48 h. In nerve cells, labelling from uridine increased in the nuclei up to 18 h after injection and there was an almost parallel increase in the labelling in the cytoplasm and neuropil. These results are compared with earlier reports on the results from intravenous injection of uridine. In lysine-injected animals the nerve cell nuclei and cytoplasm showed a fairly constant amount of label over 48 h, but the neuropil counts increased steeply. The activity of the blood was determined by scintillation counting during the 48-h period, and, as with uridine injection, was found to be almost constant over this period. A small series of animals was injected with 0.5 mCi of [3H]uracil, [3H]guanine, [3H]guanosine or [3H]cytidine for comparison. The autoradiograms from animals injected with these bases showed very slight labelling; that from guanosine was heavy in plexus nuclei, slight in nerve cells, and from cytidine it was heavy in plexus cells and moderate in nerve cells.  相似文献   

13.
Previous experiments have demonstrated that 4S RNA, (tRNA), is transported axonally during the reconnection and maturation of regenerating optic nerves of goldfish. The present experiments were performed to determine if tRNA is transported axonally during elongation of these regenerating nerves and whether, as has been demonstrated in other systems, it participates in posttranslational protein modification (PTPM). [3H]Uridine was injected into both eyes of fish with intact optic nerves and 0, 2, 4, or 8 days after bilateral optic nerve cut. Fish were killed 2 days after injection, and [3H]RNA was isolated from retinae and nerves by phenol extraction and ethanol precipitation. [3H]RNA was fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Although the percentage of [3H]4S RNA remained constant in all retinal and control nerve samples, regenerating nerves showed a twofold increase by 6 days after injury, suggesting that [3H]4S RNA is transported axonally in regenerating nerves as early as 6 days after injury. In other experiments, the 150,000-g supernatant of optic nerves was analyzed for incorporation of 3H-amino acids into proteins. No incorporation of 3H-amino acid was found in the soluble supernatant, but when the supernatant was passed through a Sephacryl S-200 column (removing molecules less than 20,000 daltons), [3H]Arg, [3H]Lys, and [3H]Leu were incorporated into proteins. This posttranslational addition of amino acids was greater (1.4-5 times for Lys and 2-13 times for Leu) in regenerating optic nerves than nonregenerating nerves, and the growing tips of regenerating nerves incorporated 5-15 times more [3H]Lys and [3H]Leu into proteins than did the shafts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Synthesis of RNA in neurons of the hypoglossal nerve nucleus after axonal section was studied by means of [5-3H]uridine administration and radioautographic counting techniques in mice. The results of the experiments were evaluated by counts of silver grains over the nucleoplasm and cytoplasm of the neurons. RNA synthesis was greater in neurons after axonal section, and this increase was evident from 12 hr after the operation. The greatest increases in the operated side were observed in the 1st, 2nd and 3rd days after operation. In the 7th and 14th days RNA synthesis was still greater in the hypoglossal nucleus of the sectioned nerve but the difference in the control nucleus was not so striking. In the 30th day synthesis of RNA in left and right hypoglossal nuclei was comparable.  相似文献   

15.
In vitro incorporation of [Me-3H] thymidine and [5-3H] uridine into human platelets was demonstrated. Thymidine incorporation was inhibited by three specific inhibitors of DNA synthesis: hydroxyurea, cytosine arabinoside and daunomycin. The effect was dose-dependent. Uridine uptake by platelets was found to be inhibited by specific inhibitors of RNA synthesis such as actinomycin D, rifampicin and vincristine, the effect of actinomycin D being dose dependent. The drug also led to a time-dependent inhibition of protein synthesis when preincubated with platelets. The platelet RNA profile on polyacrylamide gel was demonstrated to be similar to that of embryonic mouse erythroblast RNA. Synthesis of all three fractions, 28 S, 18 S and 4 S, was inhibited by actinomycin D. These findings show that human platelets are capable of DNA and RNA synthesis, and that these activities play a role in controlling protein synthesis in these cells. Detectable amounts of DNA have been found in whole human platelets, and in isolated mitochondria derived from these cells. Isolated platelet mitochondria incorporated [3H] thymidine and [3H] uridine into their macromolecules. These activities were inhibited by daunomycin and by both rifampicin and actinomycin D, respectively. These results support the assumption that DNA and RNA synthesis found in intact cell preparations takes place most probably in platelet mitochondria.  相似文献   

16.
17.
1. Uptake of [3H]uridine into the nucleotide precursor pool after intraventricular injection occurs with the same intensity in the brain of torpid and normothermic awakened ground squirrels. This indicates that the membrane uridine transporters and uridine kinases operate in the hibernator's brain in a hypothermia-tolerant way. 2. Utilization of the [3H]uridine pool for synthesis of the rapidly labelled RNA in the brain of torpid ground squirrels falls more than eight times against RNA labelling in the brain of the active animals between bouts of hibernation. 3. Two hours from the beginning of the artificially provoked awakening, RNA uridine incorporation in the brain of ground squirrels has risen 6.5 times. 4. Drastic changes in [3H]uridine RNA labelling under the stable uridine uptake exclude the precursors and energy supply as the main factors determining changes in intensity of the brain RNA synthesis in the different stages of hibernation.  相似文献   

18.
The origin of axoplasmic RNA in the squid giant fiber was investigated after exposure of the giant axon or of the giant fiber lobe to [3H]uridine. The occurrence of a local process of synthesis was indicated by the accumulation of labeled axoplasmic RNA in isolated axons incubated with the radioactive precursor. Similar results were obtained in vivo after injection of [3H]uridine near the stellate nerve at a sizable distance from the ganglion. Exposure of the giant fiber lobe to [3H]uridine under in vivo and in vitro conditions was followed by the appearance of labeled RNA in the axoplasm and in the axonal sheath. While the latter process is attributed to incorporation of precursor by sheath cells, a sizable fraction of the radioactive RNA accumulating in the axoplasmic is likely to originate from neuronal perikarya by a process of axonal transport.  相似文献   

19.
RNA synthesis in response to exogenous nucleoside precursors was studied in a suspension culture of rose cells. Exponentially growing and resting cells were prelabeled with [3H] uridine, an excess of unlabeled uridine added, and subsequent isotopic incorporation into nuclear and ribosomal fractions measured. The data were compared to control values in cells continuously labeled in the absence of unlabeled uridine. Addition of uridine to the growing culture reduced the further uptake, and incorporation of [3H] uridine into RNA. In contrast, in resting cells, the addition of uridine (or, purine nucleosides) enhanced the apparent utilization of [3H] uridine in RNA synthesis by 2- to 4-fold.  相似文献   

20.
—After injection of [3H]guanosine or [3H]uridine into the eye of goldfish, labelled acid-soluble radioactivity and RNA appeared in the contralateral optic tectum. When 0·1 μg actinomycin-D was injected into the eye 4 h before the precursor, the labelled RNA in the retina by 18 h after the injection was only 23 per cent of normal, but the acid-soluble radioactivity in the retina and the small amount of labelled acid-soluble material conveyed to the tectum were not significantly affected; by 15–20 days after the injection the acid-soluble radioactivity in the retina was reduced and the amount of labelled material conveyed to the tectum, including both RNA and acid-soluble fractions, was less than normal. When the actinomycin was injected at various times before or after the precursor and measurements were made 6 days later, it was found that the amount of labelled RNA conveyed to the tectum was maximally decreased if the inhibitor was given simultaneously with or up to 4 h before the precursor, whereas the amount of RNA was normal if the incorporation of the precursor had been allowed to proceed for 12 h before the inhibitor was given. This result would be consistent with the view that much of the RNA conveyed to the tectum had been synthesized in the retina within 12 h of the injection of the precursor, and had then presumably been axonally transported in the optic nerve to the tectum. However, since the acid-soluble material conveyed to the tectum was also reduced as a result of the actinomycin treatment, the results of these experiments with actinomycin do not unequivocally rule out the possibility that the RNA appearing in the tectum had been locally synthesized from the axonally transported acid-soluble material. In the retina, both the labelled RNA and acid-soluble fractions were reduced, to about 15 and 60 per cent of normal, respectively, without any relationship to the time between the injection of inhibitor and precursor. The discrepancy between the effects of the labelling of the retina and the labelling of material conveyed to the tectum could be correlated with the fact that the actinomycin caused severe damage to the retinal receptor cells, while leaving the ganglion cells relatively intact. The more pronounced effect of actinomycin on the receptor cells could in turn be correlated with the fact that these cells had a higher rate of RNA synthesis than the ganglion cells. This was demonstrated autoradiographically by the higher rate of incorporation of [3H]uridine into the receptor cells. Intracranial injection of actinomycin did not affect significantly the amount of labelled RNA conveyed to the tectum, which would argue against the local synthesis of this RNA. It is not certain, however, that the actinomycin penetrated deeply enough into the tectum to be effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号