首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Synopsis The biochemical analysis of enzyme activities in cultured human cells has become an increasingly important tool in the (prenatal) diagnosis of inborn errors of metabolism and in fundamental studies of somatic cell genetics and metabolic interaction of normal and mutant human cells. In all these fields the use of microchemical analyses offers new possibilities in the assay of enzymes in small numbers or even single cultured cells.When cell cultivation is carried out in dishes with a thin plastic foil at the bottom, groups of a few hundred cells and single cells can be sampled after quick freezing and freeze-drying of the culture. Incubation of this material in (sub)microlitre volumes ofp-nitrophenyl or methylumbelliferyl substrates, followed by extinction or fluorescence measurements in microdroplets using a microspectrofluorometer enables lysosomal enzyme activities in the range of 10–11–10–14 mol/hr/cell to be detected.Application of these techniques in assays of -1,4-glucosidase and -galactosidase on groups of 100–300 freeze-dried cultured amniotic fluid cells have enabled the prenatal diagnosis of glycogenosis-II and Fabry's disease respectively within 10–12 days after amniocentesis in the 14–15th week of pregnancy. This is a considerable reduction in the time interval hitherto required, 4–6 weeks, for the prenatal diagnosis of metabolic diseases.Examples of application of enzyme assays on single cultured cells are presented for studies on the interaction between enzyme-deficient and normal cultured cells and for genetic complementation studies after hybridization of two human cell strains. By using Lowry's principle of NADP(H) cycling, glucose-6-phosphate dehydrogenase (G-6-PD) activity could be reliably measured in single binuclear hybrid cells after fusion of normal and G-6-PD deficient human cell strains. With the same technique we were also able to detect two cell populations (normal and G-6-PD-deficient) within one culture of a heterozygous carrier for G-6-PD deficiency without the need of elaborate cell cloning techniques.Finally, a microfluorometric assay procedure was developed to enable certain lysosomal enzyme activities to be measured in single (hybrid) human cells. An example of this application is presented for -galactosidase activity measurements in single cells from a mixed culture of normal fibroblasts and cells from a patient with GM1-gangliosidosis (-galactosidase-deficient). In none of our experiments was any evidence obtained for the metabolic correction of enzyme-deficient cells by the uptake of enzyme from normal cells.  相似文献   

2.
Summary Glucose-6-phosphate dehydrogenase (G-6-PD) deficiency, identified by a dye decolorization test, was found in 101 (12.5 percent) of 811 male subjects from northern Tailand. Blood samples from 169 subjects with normal G-6-PD activity and from all 101 subjects with G-6-PD deficiency were examined by electrophoresis on cellulose acetate gel with the following results: In all samples with normal G-6-PD activity the enzyme had the electrophoretic mobility of type B G-6-PD. 73 of the 101 G-6-PD deficient samples had the same mobility and are therefore probably identical with the common Mediterranean variant B-. 16 of the 101 deficient samples contained an electrophoretically fast G-6-PD, and 1 sample a slow variant. In 11 deficient samples the enzyme could not be made visible. Kinetic studies on crude hemolysates suggest that the fast variant has a higher mean activity and heat stability in comparison to the B- variant.Established and supported by Stiftung Volkswagenwerk, Hannover.  相似文献   

3.
Summary In two studied variants of G-6-PD without chronic hemolysis in probands, sensitivity of enzymes to inhibition by NADPH was decreased. Ki for NADPH was 28 M in Gd Lublin and 19 M in Gd Pozna. Susceptibility to the oxidant-induced hemolysis was described in probands, as well as in patients hemizygous for two other variants of G-6-PD with increased Ki for NADPH. It is suggested that in these cases, the oxidant-induced hemolysis is aggravated by their inability to counteract the drop in NADPH concentration with an increase in G-6-PD activity.  相似文献   

4.
Studies have been conducted on eight sets of monozygous and nine sets of dizygous female Negro twins, both members of whom were heterozygous for G-6-PD deficiency. Twins were studied both by assay of erythrocytic G-6-PD activity and by the methemoglobin elution test (MET). The MET is a procedure which identifies histochemically cells with appreciable G-6-PD activity and permits accurate determination of the percentage of such cells in heterozygotes. Monozygous twins showed significantly less within-pair variation than dizygous twins with both the MET and G-6-PD assay.Concerning the significantly greater agreement in MET results in monozygous twins than dizygous twins, our present working hypothesis is that X-chromosomal inactivation in the Negro female is genetically controlled, rather than random. However, certain alternate hypotheses allowing for random X-inactivation have not been excluded; these include somatic cell selection after random X-inactivation, and cell exchange between identical twins in utero/it. Studies in nontwin related heterozygotes now underway should help differentiate among these various possibilities.In addition to the studies on 17 pairs of female twins heterozygous for G-6-PD deficiency, 26 pairs of nondeficient female Negro twins have been studied by G-6-PD assay. Within-pair variation in monozygous twins was significantly less than within-pair variation in dizygous twins in all cases. The genetic influences detected with the G-6-PD assay in the female twins could theoretically be due to nonrandom X-inactivation, to genetically determined quantitative differences in enzyme activity (e.g., isoalleles), or to both. By appropriate calculations, based on the MET results, we have factored out the effects of X-inactivation on overall enzyme activity in the heterozygous deficient twins. After removal of the effect of X-inactivation, monozygous twins heterozygous for enzyme deficiency continue to show significantly less within-pair variation than dizygous twins. This finding indicates significant genetic influences on quantitative G-6-PD activity other than X-inactivation and other than the deficiency allele. This conclusion has been strengthened by studies on male twins where X-inactivation is not present.Supported by USPHS research grants AM-09381, HE-17544, AM-09919, and HE-03341, by USPHS Career Development Award 1-K3-AM-7959 (Dr. Brewer) and by U.S.A.E.C. Contract (11-1)-1552.  相似文献   

5.
Summary A new, favism-inducing variant of glucose-6-phosphate dehydrogenase in erythrocytes is described in a Polish family. The enzyme activity has been 0–4% of normal. The enzyme displayed normal heat stability, electrophoretic mobility 105–110% of normal, Km for NADP: 16–22 M, Km for G-6-P: 26 M, and the utilization of 2-deoxy-G-6-P: 2–3%.  相似文献   

6.
The specific activity of glucose-6-phosphate dehydrogenase (G-6-PD) in growth zones ofVicia faba roots is increasing with cell maturation and differentiation. Changes in the total activity of G-6-PD are not associated with a change in the number of G-6-PD isoenzymes. Five G-6-PD isoenzymes were found in all root growth zones. Some differences were found in the activity of individual isoenzymes.  相似文献   

7.
Summary Characterization of partially purified eryrhrocyte G-6-PD from 50 enzymedeficient males in 45 unrelated Thai families revealed 6 enzyme variants. Thirty-five subjects in 31 families had G-6-PD variant with normal electrophoretic mobility, slightly low Km G-6-P, normal substrate-analog utilization, normal pH-optimum curve, and slightly increased heat stability. This enzyme variant is called G-6-PD Mahidol.Six subjects had enzyme with fast electrophoretic mobility (106–108% of normal), low Km G-6-P, slightly increased substrate-analog utilization, biphasic pH-optimum curve, and slightly low to normal heat stability. This variant was identical to G-6-PD Canton.Five subjects had G-6-PD with fast electrophoretic mobility (103–106% of normal), low Km G-6-P, very high substrate-analog utilization except for DPN which it did not use as cofactor, markedly biphasic pH-optimum curve and very low heat stability. This variant is called G-6-PD Union (Thai).Two brothers had G-6-PD with normal electrophoretic mobility, low Km G-6-P, slightly increased substrate-analog utilization, biphasic pH-optimum curve and low heat stability. This variant is designated G-6-PD Siriraj.G-6-PD from one patient had slightly fast electrophoretic mobility, increased substrateanalog utilization, especially of DPN, and very low thermal stability. It is called G-6-PD Kan.One subject had G-6-PD with normal electrophoretic mobility, Km G-6-P, pH-optimum curve and heat stability, and increased substrate-analog utilization. This G-6-PD variant is named G-6-PD Anant.G-6-PD Mahidol is far more common than any other known variants in Thailand.
Zusammenfassung Eine Charakterisierung von teilweise gereinigtem Erythrocyten-G-6-PD von 50 Männern mit Enzym-Defekt aus 45 nicht miteinander verwandten Thai-Familien ergab 6 Enzym-Varianten. 35 Personen in 31 Familien hatten eine G-6-PD-Variante mit normaler elektrophoretischer Wanderungsgeschwindigkeit, einen leicht verminderten G-6-P-Km-Wert, einer normalen Substratanalog-Verwertung, einer normalen pH-Optimum-Kurve und einer leicht erhöhten Hitze-Stabilität. Diese Enzym-Variante wurde G-6-PD Mahidol genannt.Sechs Personen hatten ein Enzym mit rascher elektrophoretischer Wanderung (106–108% der Norm), niedrigem Km für G-6-P, leicht erhöhter Substrat-Verwertung, einer biphasischen pH-Optimum-Kurve und normaler bis leicht erniedrigter Hitzestabilität. Diese Variante ist identisch mit G-6-PD Canton.Fünt Personen hatten G-6-PD mit rascher elektrophoretischer Wanderung (103–106%), niedrigem Km G-6-P, sehr hoher Substratanalog-Verwertung—mit Ausnahme von DPN, das nicht als Cofactor wirkte—, einer stark biphasischen pH-Optimum-Kurve und sehr geringer Hitze-Stabilität. Diese Variante wurde als G-6-PD Union (Thai) bezeichnet.Zwei Brüder hatten ein G-6-PD mit normaler elektrophoretischer Wanderung, niedrigem Km G-6-P, leicht erhöhter Substratanalog-Verwertung, einer biphasischen pH-Optimum-Kurve und geringer Hitze-Stabilität. Diese Variante erhielt den Namen G-6-PD Siriraj.G-6-PD eines Patienten hatte eine leicht erhöhte elektrophoretische Wanderungsgeschwindigkeit, eine erhöhte Substratanalog-Verwertung, besonders für DPN, und eine sehr geringe Hitze-Stabilität (G-6-PD Kan).Eine Person zeigte ein G-6-PD mit normaler elektrophoretischer Wanderungsgeschwindigkeit, Km G-6-P pH-Optimum-Kurve und Hitze-Stabilität. Nur die Substratanalog-Verwertung war erhöht. Diese Variante wurde G-6-PD Anant gennant.G-6-PD Mahidol ist die bei weitem häufigste Variante in Thailand.


This investigation received financial support from the World Health Organization.  相似文献   

8.
The capacity of the oxidative pentose phosphate pathway (PPP) in the heart is limited, since the activity of glucose-6-phosphate dehydrogenase (G-6-PD), the first and regulating enzyme of this pathway, is very low. Two mechanisms are involved in the regulation of this pathway. Under normal conditions, G-6-PD is inhibited by NADPH. This can be overcome in the isolated perfused rat heart by increasing the oxidized glutathione and by elevating the NADP+/NADPH ratio. Besides this rapid control mechanism, there is a long-term regulation which involves the synthesis of G-6-PD. The activity of G-6-PD was elevated in the rat heart during the development of cardiac hypertrophy due to constriction of the abdominal aorta and in the non-ischemic part of the rat heart subsequent to myocardial infarction. The catecholamines isoproterenol and norepinephrine stimulated the activity of myocardial G-6-PD in a time- and dose-dependent manner. The isoproterenol-induced stimulation was cAMP-dependent and due to increased new synthesis of enzyme protein. The G-6-PD mRNA was elevated by norepinephrine. As a consequence of the stimulation of the oxidative PPP, the available pool of 5-phosphoribosyl-l-pyrophosphate (PRPP) was expanded. PRPP is an important precursor substrate for purine and pyrimidine nucleotide synthesis. The limiting step in the oxidative PPP, the G-6-PD reaction, can be bypassed with ribose. This leads to an elevation of the cardiac PRPP pool. The decline in ATP that is induced in many pathophysiological conditions was attenuated or even entirely prevented by i.v. infusion of ribose. In two in vivo rat models, the overloaded and catecholamine-stimulated heart and the infarcted heart, the normalization of the cardiac adenine nucleotide pool by ribose was accompanied by an improvement of global heart function. Combination of ribose with adenine or inosine in isoproterenol-treated rats was more effective to restore completely the cardiac ATP level within a short period of time than either intervention alone. (Mol Cell Biochem 160/161: 101–109, 1996)  相似文献   

9.
Summary The activity of erythrocyte glutathione reductase (GR) was determined in a group of 87 prisoners from northern Thailand (65 with normal, 22 with deficient erythrocyte G-6-PD) without and with added FAD. The amount of stimulation by FAD was inversely related to the original activity suggesting that FAD stimulation in vivo is one of the main determinants of GR activity. 4 subjects showed insufficient stimulation by FAD. The binding of FAD to GR seemed to be closer to saturation in G-6-PD deficient subjects but the maximal stimulated activity of these subjects was higher than in the group with normal G-6-PD. This suggests that the marked increase of GR activity in G-6-PD deficient erythrocytes is due to increased binding of FAD and to a larger amount of stimulable enzyme. Original GR activity was positively correlated with the socio-economic status, and subjects who had taken riboflavin in the period prior to examination had a higher mean GR activity than those without vitamin intake. GR activity was markedly raised by administration of riboflavin and in G-6-PD deficient subjects glutathione stability was improved. In comparison to central European subjects more than 50 percent of the examined population are GR deficient. This seems to be due to a low dietary supply of riboflavin in most cases. The findings in 4 subjects with insufficient stimulation by added FAD raise the question whether hereditary forms of GR deficiency exist in this population.
Zusammenfassung In einer Gruppe von 87 Strafgefangenen in Nordthailand (65 mit normaler, 22 mit defizienter G-6-PD) wurde die Aktivität der Glutathion-Reductase (GR) mit und ohne Zusatz von FAD bestimmt. Das Ausmaß der Stimulierung des Enzyms durch FAD verhielt sich reziprok zur ausgangsaktivität. Bei 4 Versuchspersonen war die Stimulierung durch FAD insuffizient. Die Bindung von FAD an GR war bei Versuchspersonen mit G-6-PD-Mangel näher am Sättigungspunkt. Aber auch die gesamte stimulierbare Aktivität der GR war bei Versuchspersonen mit G-6-PD-Mangel größer als bei Gesunden. Die deutliche Erhöhung der GR-Aktivität bei G-6-PD-Mangel scheint zwei Ursachen zu haben: vermehrte Bindung von FAD an das Enzym und Vermehrung der Gesamtmenge an stimulierbarem Enzym. In einer weiteren Gruppe war die Ausgangsaktivität der GR vom sozio-ökonomischen Status der Versuchsperson abhängig. Personen, die vor der Untersuchung Riboflavin-haltige Medikamente eingenommen hatten, hatten höhere Aktivitäten. Die GR-Aktivität wurde durch Einnahme von Riboflavin unter Kontrolle stark erhöht, und bei Versuchspersonen mit G-6-PD-Mangel wurde die Glutathion-Stabilität der Erythrocyten verbessert. Im Vergleich zu Mitteleuropäern sind mehr als die Hälfte der thailändischen Versuchspersonen als GR defizient einzustufen. Dies ist wahrscheinlich auf eine geringere Zufuhr an Riboflavin in der Nahrung zurückzuführen. Die Befunde bei 4 Versuchspersonen mit insuffizienter Stimulierung der GR durch FAD könnte durch einen erblichen Mangel an GR verursacht sein.


Established and supported by Stiftung Volkswagenwerk.  相似文献   

10.
V. Panich 《Human genetics》1973,17(2):169-171
Summary Partially purified G-6-PD from 4 deficient Thai males presenting with acute hemolytic anemia showed low Km G-6-P consumption, and very high consumption of 2d G-6-P, Gal-6-P, and dTPN. DPN consumption was zero. The enzyme had very biphasic pH optimum curve and very low heat stability. Electrophoretic mobility was 103–106% of normal. These properties are very similar to those of G-6-PD Union. The enzyme of these 4 subjects is thus named G-6-PD Union (Thai).
Zusammenfassung Teilweise gereinigtes G-6-PD von 4 Thai-Männern, die wegen einer hämolytischen Anämie zur Behandlung kamen, zeigten eine niedrige km G-6-P, dagegen hohe 2d G-6-P, Gal-6-P und dTPN-Utilisation. DPN-Utilisation was O. Das Enzym zeigte eine starke biphasische pH-Optimum-Kurve und sehr geringe Hitzestabilität. Die elektrophoretische Wanderungsgeschwindigkeit war 103–106% des Normalen. Diese Eigenschaften sind sehr ähnlich denen des G-6-PD-Union. Deshalb wird das Enzym dieser drei Personen als G-6-PD-Union (Thai) bezeichnet.


Supported by U.S. Public Health research grant AM 09805 from the National Institute of Arthritis and Metabolic Diseases and research grant no G3/181/74 from the World Health Organization.  相似文献   

11.
Summary Histochemical data are presented concerning distributions of succinic dehydrogenase (SD), lactic dehydrogenase (LD), diphosphopyridine nucleotide diaphorase (DPND), triphosphopyridine nucleotide diaphorase (TPND) and glucose-6-phosphate dehydrogenase (G-6-PD) in the pancreas from the American variety of obese-hyperglycemic mice (AO-mice) and their lean litter mates (AN-mice).A high LD activity was found in the exocrine parenchyma, while the reaction in the islet tissue and the duct epithelium was only weak. A considerable reaction for DPND was noted throughout the pancreas. SD activity was slightly more pronounced in the acinar tissue and duct epithelium as compared to the islet tissue, where only a moderate activity appeared. Strong reactions for TPND and G-6-PD were found in the islet cells and duct epithelium, while the activity in the exocrine parenchyma was less pronounced. The hyperactive islet B cells in the AO-mice showed no obvious differences in enzyme activity and distribution compared to that of the AN-mice. The enzyme pattern of the A cells could not be clearly distinguished from that in the B cells.The results suggest the existence at least in the B cells of the mice islet tissue of an active hexosemonophosphate shunt. The probable significance of the hexosemonophosphate shunt for insulin synthesis is briefly discussed.The following abbreviations are used DPN Diphosphopyridine nucleotide - DPND Diphosphopyridine nucleotide diaphorase - DPNH Diphosphopyridine nucleotide, reduced form - EM Embden-Meyerhof - G-6-PD Glucose-6-phosphate dehydrogenase - HMP Hexose monophosphate - LD Lactic dehydrogenase - MTT 3,5-diphenyl-2-(4,5-dimethyl-thiazol-2-yl) tetrazolium bromide - Nitro-BT 2,2-di-p-nitrophenyl-5,5-diphenyl-3,3-(3,3-dimethoxy-4,4-biphenylene)-ditetrazolium chloride - PVP Polyvinyl pyrrolidone (M. W. 11 000) - SD Succinic dehydrogenase - TPN Triphosphopyridine nucleotide - TPND Triphosphopyridine nucleotide diaphorase - TPNH Triphosphopyridine nucleotide, reduced form  相似文献   

12.
SYNOPSIS. The activities of glucose-6-phosphate dehydrogenase (G-6-PD) (EC No. 1.1.1.49), 6-phosphogluconate dehydrogenase (PGD) (EC No. 1.1.1.44), and isocitrate dehydrogenase (ICD) (EC No. 1.1.1.42) from promastigotes of Leishmania donovani strain 3S grown at 25 C in modified Tobie's (mT) medium and from promastigotes of the 37 C-adapted substrain of this strain cultivated in the mT at 37 C were assayed at 25 and 37 C. At 25 C ICD from both the strain and the substrain had the highest, and PGD, the lowest activity; the activity of G-6-PD was intermediate, but much closer to that of ICD. Irrespective of the temperature of the assay, the activities of G-6-PD and ICD from the 37 C substrain were significantly higher than those of these enzymes from the parental strain; however, the activity of PGD from the 25 C strain was slightly higher than that of this dehydrogenase from the 37 C-adapted stock. No significant activity losses of G-6-PD and ICD from either the strain or the substrain were noted after incubation of the extracts in the presence of 0.25 M sucrose at 37 C for 2 hr. PGD was unstable in such extracts, but it could be rendered stable by the addition of 4 mM 6-phosphogluconate. G-6-PD was the least and ICD the most dependent on Mg2+ ions. In the 15–25 C range, the Q10 values of the enzymes from the 25 C strain were 2.83, 2.5, and 2.63 for G-6-PD, PGD, and ICD, respectively. These values for the respective enzymes in the 25–35 C range were 2.06, 1.67, and 1.62. The Q10 values of the enzymes from the 37 C substrain in the 15–25 C range were 2.06 for G-6-PD, 3.25 for PGD, and 2.77 for ICD; in the 25–35 C range, the corresponding values were 1.67, 1.46, and 1.83. Cultivation of the 37 C substrain at 25 C was accompanied by a drop in G-6-PD and ICD activities.  相似文献   

13.
Summary A deficient G-6PD variant was discovered in 4 males of one family from north-western Germany. Five generations of this family could be studied.The deficient G-6PD was a new variant, called Gd (-) Aachen. Its main characteristics are the following: severe enzyme deficiency in erythrocytes (3% of normal), contrasting with an almost normal activity in leukocytes; normal molecular specific activity (i.e., normal ratio enzyme activity/cross-reacting material); slow mobility in starch gel electrophoresis (92–94% of normal); increased Michaelis constant for glucose-6-phosphate (60–70 M) and NADP+ (20–25 M); decreased inhibition constant by NADPH with respect to NADP+ (7 M); increased inhibition by ATP; normal utilization of the substrate analogues; slightly biphasic pH curve; thermal instability, and normal activation energy of the enzymatic reaction.The relationships between the hematologic disorders (severe and frequent hemolytic crises) and the unfavorable kinetic modifications are discussed.with the technical assistance of Joelle Marie and Dominique CottreauDedicated to Prof. Dr. H. Schonenberg, Aachen, on his 60th birthday. The first results of this work were presented in part at the Kongress der Deutschen Kinderärzte, München.  相似文献   

14.
Catecholamines and thyroid hormones have a similar influence on heart function and metabolism, but this may occur in a differential manner and to a different extent In this study, the effects of norepinephrine (NE) and of triiodothyronine (T3) were studied in regard to the function of the left (LV) and right ventricle (RV) and to the oxidative pentose phosphate pathway (PPP). NE was applied in rats as continuous i. v. infusion (0.2 mg/kg/h) for three days. T3 was given as daily s.c. injections (0.2 mg/kg) for the same period of time. LV, and RV function was measured in the closed-chest trapanal-anesthetized animals using special Millar ultraminature catheter pressure transducers. NE induced an increase in heart rate, in mean arterial pressure, and in total peripheral resistance (TPR). The cardiac RNA/DNA and the left ventricular weight/body weight ratios were increased by about 40%. These effects were prevented by simultaneous -and -receptor blockade with prazosin and metoprolol, respectively, but not by verapamil which abolished the hemodynamic effects. RVSP was significantly elevated by NE in a dose-dependent manner. The functional effects of T3 on the LV were not as pronounced as those induced by NE. Heart rate and LV dp/dtmax were increased by T3 and this increase was prevented by concomitant -receptor blockade with, metoprolol. In contrast to NE, T3 induced an increase in cardiac output and a concominant decrease in TPR. The RNA/DNA ratio was elevated and cardiac hypertrophy had developed after treatment for three days with T3. These changes were not affected by -receptor blockade with metoprolol. RVSP was increased by T3 to a lesser extent than with NE. In metabolic terms in turned out that only NE, but not T3 had a stimulating effect on the cardiac PPP. NE increased the mRNA and activity of glucose-6-phosphate dehydrogenase (G-6-PD), the first and regulating enzyme of this pathway. However, there was no effect of T3 on G-6-PD activity nor on 6-phosphogluconate dehydrogenase activity, one of the following enzymes in the pathway within the first 5 days of T3 treatment. These results demonstrate that the functional effects of T3 were not as pronounced as or even different from those of NE, and that T3 lacked a stimulating effect on the cardiac PPP.  相似文献   

15.
Summary An extract from 6000 dark-grown Phaseolus coccineus seedlings was purified by countercurrent distribution and G-10 Sephadex followed by gradient elution from a silicic acid partition column with increasing amounts of ethyl actetate in n-hexane. 25 fractions were collected and tested with the barley-aleurone, Tan-ginbozu dwarf-rice, lettuce, cucumber, dwarf-pea, d-1, d-2, d-3 and d-5 maize, oat first-internode, and sugarcane-spindle bioassays. Major gibberellin (GA)-like activity was detected in fractions 4 (500g GA3-equivalents) and 12–13 (270 g GA3-equivalents) with smaller amounts in fractions 6, 8–9, 15–16, 18, 20, 23 and 25. The extracts were also applied to AMO-1618=dwarfed Ph.-coccineus seedlings. Fractions 4, 8 and 12 promoted the growth of both light- and dark-grown seedlings. GA1, GA3, GA4 and GA8 were active in the Phaseolus bioassay but GA8-glucoside was inactive.The biological and chromatographic properties of fractions 4, 8–9 and 12–13 correspond with those of GA4, GA19 and GA1. The identity of GA4 in fraction 4 was conclusively established by combined gas chromatography-mass spectrometry (GC-MS) of the methyl ester and the trimethylsilyl ether of the methyl ester. Gasliquid-chromatography peaks corresponding to these derivatives of GA19 and GA1 were detected on QF-1 and SE-33 columns but their intensities were too weak to permit conclusive identification by GC-MS.Supported by an S.R.C. StudentshipSupported by a NATO Grant.Supported by NRC Grant A-5727.  相似文献   

16.
17.
Summary A new Indian variant of erythrocytic glucose-6-phosphate dehydrogenase (G-6-PD) has been detected in a Koli male subject during population genetic studies. The enzyme variant is characterized by mild enzyme deficiency, slow electrophoretic mobility, low Km for G-6-P, increased utilization of substrate analogues, heat instability and a normal pH optimum curve. From these results this was considered to be a new variant and was designated G-6-PD Kalyan. The family history and routine hematological studies did not reveal any evidence that the G-6-PD Kalyan is associated with any hematological abnormalities or clinical symptoms.  相似文献   

18.
An extracellular xylanase enzyme fraction A from a mesophilicClostridium strain SAIV was purified by ammonium sulfate precipitation, Sephadex G-50 gel filtration and DEAE-Sephadex A-50 ion exchange. The xylanase exhibited a molecular weight of 30,000 and it was stable upto 55° C with an optimum temperature of 50° C. It was most stable between pH 5–7, with an optimum pH of around 6. The Km value was 7.0 mg·xylan ml-1 and Vmax was 36 mol·xylose liberated mg-1 min-1. Carboxymethyl cellulose, filter paper cellulose and 4-p-nitrophenyl -D-xylopyranoside were not hydrolysed. The specific activity of xylanase fraction A (9.8 U mg-1) is 2–10 fold higher than the specific activity of xylanase in other mesophilic, xylanolytic, obligate anaerobic bacteria. A minor fraction of xylanase activity designated as xylanase B was also obtained supporting the view that the multiplicity of xylanases is common in microorganisms.  相似文献   

19.
Summary The authors' work on the purification and steady state kinetic investigation of the enzyme glycogen synthase D (UDP-glucose: glycogen 4--glucosyl-transferase, EC 2.4.1.11) from human polymorphonuclear leukocytes is reviewed. The main features of the kinetic mechanism for catalysis of the reaction UDPG + glycogenn UDP + glycogen(n+1) are: (i) Lineweaver-Burk plots in both substrates are linear, exhibiting intersecting patterns; (ii) UDP is a competitive, respectively noncompetitive, inhibitor towards the substrates UDPG and glycogen; (iii) the essential activator glucose-6-phosphate (G-6-P) showed an intersecting pattern towards glycogen and an equilibrium ordered pattern towards UDPG. These features identify in this case the mechanism as a rapid equilibrium random bi-bi mechanism, with G-6-P adding to the enzyme prior to the substrate UDPG. New results on the influence of the modifiers NaCl, Ca++, Mn++, Mg++, HPO4 –-, SO4 –-, and ATP on the enzyme are reported. Interpreting the observations in terms of the established mechanism, the following results are obtained: The effect of salt (NaCl) is nonspecific and fairly small, probably reflecting a general action of the electrolyte medium on the conformation of the enzyme. Divalent cations affect only the rate limiting step, i.e. the interconversion of the quaternary enzyme-substrate-activator complexes. The anions interact exclusively with the G-6-P binding site of the enzyme. The dissociation constants for the enzyme-modifier complexes are determined, and a kinetic mechanism for the action of the anions is proposed, leading to activation or inhibition, depending on the concentration of G-6-P.An invited article  相似文献   

20.
The effect of -alany-L-histidinato zinc (AHZ) on bone cell function was investigated in osteoblastic MC3T3-E1 cells. Cells were cultured for 3 days at 37°C in a CO2 incubator in plastic dishes containing -modified minimum essential medium supplemented with 10% fetal bovine serum. After the cultures, the medium was exchanged for that containing 0.1% bovine serum albumin plus AHZ (10–7–10–5 M) or other reagents, and the cells were cultured further for appropriate periods of time. The presence of AHZ (10–7–10–5 M) produced a remarkable increase of alkaline phosphatase activity and protein concentration in osteoblastic cells. Thus increases were seen with the prolonged cultivation (12–21 days). With the culture of 1, 3 and 12 days, the effect of AHZ (10–6 M) to increase alkaline phosphatase activity and protein concentration was more intensive than the effect of zinc sulfate, (10–6 M). The AHZ effects were completely abolished by the presence of cycloheximide (10–6 M), indicating that AHZ stimulates protein synthesis in the cells. The present study suggests that AHZ has a stimulatory effect on cell differentiation, and that this effect is partly involved on protein synthesis in osteoblastic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号