首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Glioblastoma multiforme (GBM) is associated with high mortality due to infiltrative growth and recurrence. Median survival of the patients is less than 15 months, increasing requirements for new therapies. We found that both arsenic trioxide and 10058F4, an inhibitor of Myc, induced differentiation of cancer stem-like cells (CSC) of GBM and that arsenic trioxide drastically enhanced the anti-proliferative effect of 10058F4 but not apoptotic effects. EGFR-driven genetically engineered GBM mouse model showed that this cooperative effect is higher in EGFRvIII-expressing INK4a/Arf-/- neural stem cells (NSCs) than in control wild type NSCs. In addition, treatment of GBM CSC xenografts with arsenic trioxide and 10058F4 resulted in significant decrease in tumor growth and increased differentiation with concomitant decrease of proneural and mesenchymal GBM CSCs in vivo. Our study was the first to evaluate arsenic trioxide and 10058F4 interaction in GBM CSC differentiation and to assess new opportunities for arsenic trioxide and 10058F4 combination as a promising approach for future differentiation therapy of GBM.  相似文献   

2.
Recent studies have shown that arsenic trioxide (ATO) is an effective anti-cancer drug for treatment of acute promyelocytic leukemia and other types of human cancer. However, we have found that lung cancer cells constantly develop a high level of resistance to ATO. In this study, we have explored a possibility of combination of dihydroartemisinin (DHA) and ATO treatments to reduce ATO resistance of lung cancer cells. We determined the combinatory effects of DHA and ATO on cytotoxicity of human lung adenocarcinoma (A549) cells. We showed that co-exposure to DHA and ATO of A549 cells synergistically increased the cytotoxicity and apoptotic cell death in the cells. We found that the synergistic effect of DHA and ATO in promoting apoptosis mainly resulted from increased cellular level of reactive oxygen species (ROS) and DNA damage. ATO alone only exerted moderate growth inhibitory effects on A549 cells. The results indicate that DHA can significantly sensitize ATO-induced cytotoxicity of A549 lung cancer cells through apoptosis mediated by ROS-induced DNA damage. Interestingly, we found that the combinatory treatment of DHA and ATO did not result in significant adverse effects in normal human bronchial epithelial (HBE) cells. Our results further provide evidence for the potential application of combinatory effects of DHA and ATO as a safe therapy for human lung cancer.  相似文献   

3.
No Abstract Available

Key Words:

APL (acute promyelocyctic leukemia), As2O3, PML (promyelocytic leukemia) gene, PML/RARa fusion protein, HDAC (histone deacetylase inhibitor)  相似文献   

4.
Arsenic trioxide (As2O3; ATO, TRISENOX?) is used to treat patients with refractory or relapsed acute promyelocytic leukaemia while its application for treatment of solid cancers like glioblastoma is still under evaluation. In the present study, we investigated the interaction of arsenic trioxide with metallothionein (MT) isoforms as a possible (protective response) resistance of glioblastoma cells to arsenic-induced cytotoxicity. Special attention was focused on MT3, the isoform expressed mainly in the brain. MT3 has low metal inducibility, fast metal binding/releasing properties and outstanding neuronal inhibitory activity. The human astrocytoma (glioblastoma) cell line U87 MG was treated with 0.6, 2 and 6?C7???M arsenic (equivalent to 0.3, 1 and 3?C3.5???M As2O3) for 12, 24 or 48?h and gene expression for different MT isoforms, namely MT2A, MT1A, MT1F, MT1X, MT1E and MT3, was measured by real time qPCR using SYBR Green I and Taqman? gene expression assays. TfR, 18S rRNA, GAPDH and AB were tested as reference genes, and the last two evaluated to be appropriate in conditions of low (GAPDH) and high (AB) arsenic exposure. The gene expression of MT3 gene was additionally tested and confirmed by restriction enzyme analysis with PvuII. In the given conditions the mRNAs of six MT isoforms were identified in human glioblastoma cell line U87 MG. Depending on arsenic exposure conditions, an increase or decrease of MT gene expression was observed for each isoform, with the highest increase for isoforms MT1X, MT1F and MT2A mRNA (up to 13-fold) and more persistent decreases for MT1A, MT1E and MT3 mRNA. Despite the common assumption of the noninducibility of MT3, the evident MT3 mRNA increase was observed during high As exposure (up to 4-fold). In conclusion, our results clearly demonstrate the influence of As on MT isoform gene expression. The MT1X, MT1F and MT2A increase could represent brain tumour acquired resistance to As cytotoxicity while the MT3 increase is more enigmatic, with its possible involvement in arsenic-related induction of type II cell death.  相似文献   

5.
Glioblastoma is the most malignant and lethal form of astrocytoma, with patients having a median survival time of approximately 15 months with current therapeutic modalities. It is therefore important to identify novel therapeutics. There is mounting evidence that microglia (specialized brain-resident macrophages) play a significant role in the development and progression of glioblastoma tumors. In this paper we show that microglia, in addition to stimulating glioblastoma cell invasion, also promote glioblastoma cell proliferation and resistance to ionizing radiation in vitro. We found that semapimod, a drug that selectively interferes with the function of macrophages and microglia, potently inhibits microglia-stimulated GL261 invasion, without affecting serum-stimulated glioblastoma cell invasion. Semapimod also inhibits microglia-stimulated resistance of glioblastoma cells to radiation, but has no significant effect on microglia-stimulated glioblastoma cell proliferation. We also found that intracranially administered semapimod strongly increases the survival of GL261 tumor-bearing animals in combination with radiation, but has no significant benefit in the absence of radiation. In conclusion, our observations indicate that semapimod sensitizes glioblastoma tumors to ionizing radiation by targeting microglia and/or infiltrating macrophages.  相似文献   

6.
《Translational oncology》2020,13(1):113-121
CHFR is a tumor suppressor that not only recognizes poly(ADP-ribosylation) (PARylation) signals at the sites of DNA damage but also is downregulated in many types of cancer. However, the underlying mechanism linking its role in PARylation-mediated DNA damage repair and tumor suppression is unclear. Here, we examined a panel of gastric cancer cell lines as well as primary tissue samples from gastric cancer patients, and found that CHFR expression was silenced by DNA hypermethylation in gastric cancer including 38.46% of primary gastric cancers. DNMT1 was associated with aberrant methylation of CHFR, and the expression of CHFR was restored by DNMT1 inhibitor 5-aza-2-deoxycytidine (5-aza-CdR) treatment. Moreover, we found that loss of CHFR abolished DNA damage repair and sensitized gastric tumor cells to PARP inhibitor treatment. Thus, our study reveals a potential therapeutic approach for treating gastric cancer with PARP inhibitor and lacking CHFR can serve as a biomarker for predicting the efficacy of PARP inhibitor on the gastric tumor treatment in future.  相似文献   

7.
Patients with glioblastoma multiforme (GBM) have poor therapeutic outcomes despite their current therapy. In an attempt to increase the efficacy of therapy for GBM, we studied the efficacy of arsenic trioxide (ATO), a newly introduced treatment for glioma, combined with silibinin, a natural polyphenolic flavonoid, in the GBM cell line, U87MG. The combination therapy synergically inhibited metabolic activity, cell proliferation, and gelatinase A and B activities; it also increased apoptosis. Additionally, it decreased the mRNA level of cathepsin B, uPA, matrix metalloproteinase-2 and 9, membrane type 1-MMP, survivin, BCL2, CA9; it increased mRNA level of caspase-3. Altogether, these results showed that ATO and silibinin in some cases improved and/or complemented the anticancer effects. This study may supply insight into the design of new combination cancer therapies to cells intrinsically less sensitive to routine therapies and suggested a new combination therapy for the highly invasive human glioma treatment.  相似文献   

8.
Arsenic trioxide (As2O3) is highly effective in the treatment of acute promyelocytic leukemias that express the promyelocytic leukemia-retinoic acid receptor-a (PML-RARa) fusion protein. However, evidence has accumulated that As2O3 induces apoptosis regardless of PML-RARa status. Here we show that, at clinically relevant concentrations, As2O3 causes S and G2M phase arrest of both PML-RARa-positive and -negative leukemia cell lines, thus inhibiting their growth. Apoptotic cells are generated predominately from the G2M fraction. Using several independent methods, we demonstrate that the cells accumulated in the G2M peak consist primarily of cells arrested in the early stages of mitosis, prophase, prometaphase and metaphase. In mitotic cells, there was significant activation of caspases, PARP cleavage, and morphological changes characteristic of apoptosis. Unlike microtubule-active drugs that arrest cells in metaphase, arsenic trioxide did not affect the architecture of microtubules. Our data suggest that the antileukemic activities of arsenic may be a result of mitotic arrest which culminates in apoptosis.

Key Words:

PML nuclear bodies (NB), Phosphorylated histone H3  相似文献   

9.
Hepatocellular carcinoma (HCC) is an aggressive malignancy with high chemoresistance to chemotherapeutics. Arsenic trioxide (ATO) is of therapeutic potential for the treatment of HCC; however, the therapeutic benefit of ATO is very limited due to narrow therapeutic window. Icariin is a natural compound which inhibits tumour cell growth and induces apoptotic cell death in a variety of cancer cells. This study was designed to determine whether Icariin can potentiate the antitumour activity of ATO in HCC treatment. Cell proliferation and apoptosis were measured using an MTT assay and flow cytometry respectively. Changes in reactive oxygen species (ROS) level and mitochondrial membrane potential were analysed by fluorescence signals. Protein expression was measured by western blotting and NF-κB activity was determined by ELISA assay. In addition, the antitumour effect of combination treatment with Icariin and ATO on HCC was evaluated using a murine HCC cancer xenograft model. Icariin inhibited proliferation and induced apoptosis in both of the tested HCC cell lines in a dose-dependent fashion. Icariin enhanced the antitumour activity of ATO both in vitro and in vivo. The antitumour activity of Icariin and its enhancement of the antitumour activity of ATO correlated with the generation of intracellular ROS and inhibition of NF-κB activity. Our results showed that Icariin potentiated the antitumour activity of ATO in HCC. Therefore, we propose that the combination treatment with Icariin and ATO might facilitate the optimization of ATO therapy for patients with HCC.  相似文献   

10.
The use of arsenic‐containing compounds in cancer therapy is currently being re‐considered, after the recent approval of arsenic trioxide (Trisenox®) for the treatment of relapsed promyelocytic leukemia (PML). In an attempt to prepare a carrier system to minimize the toxicity of this drug, the aim of this study is to prepare and characterize liposomes encapsulating arsenic trioxide (ATO). For this, we prepared different types of liposomes entrapping ATO: large multilamellar (MLV), sonicated (SUV) and dried reconstituted vesicles (DRV). The techniques used were: thin film hydration, sonication and the DRV method, respectively. Two lipid compositions were studied for each liposome type, EggPC/Chol (1:1) and DSPC/Chol (1:1). After liposome preparation, drug encapsulation was evaluated by measuring arsenic in liposomes. For this, energy‐dispersive X‐ray fluorescence spectroscopy or atomic absorption was used. In addition, the retention of the drug in the liposomes was evaluated after incubating the liposomes in buffer at 37°C. The experimental results reveal that encapsulation of ATO in liposomes ranges between 0.003 and 0.506 mol/ mol of lipid, and is highest in the DRV vesicles and lowest in the small unilamellar vesicles, as anticipated. Considering the in vitro stability of ATO‐encapsulating liposomes: 1) For the PC/Chol liposomes (DRV and MLV), after 24 hours of incubation, more than 70% (or 90% in some cases) of the initially encapsulated amount of ATO was released. 2) The liposomes composed of DSPC/Chol could retain substantially higher amounts of ATO, especially the DRV liposomes (54% retained after 24 h). 3) In the case of PC/Chol, temperature of incubation has no effect on the ATO release after 24 hours, but affects the rate of ATO release in the MLV liposomes, while for the DSPC/Chol liposomes there is a slight increase (statistically insignificant) of ATO release at higher temperature.  相似文献   

11.
Cancer development and chemo-resistance are often due to impaired functioning of the p53 tumor suppressor through genetic mutation or sequestration by other proteins. In glioblastoma multiforme (GBM), p53 availability is frequently reduced because it binds to the Murine Double Minute-2 (MDM2) oncoprotein, which accumulates at high concentrations in tumor cells. The use of MDM2 inhibitors that interfere with the binding of p53 and MDM2 has become a valid approach to inhibit cell growth in a number of cancers; however little is known about the efficacy of these inhibitors in GBM. We report that a new small-molecule inhibitor of MDM2 with a spirooxoindolepyrrolidine core structure, named ISA27, effectively reactivated p53 function and inhibited human GBM cell growth in vitro by inducing cell cycle arrest and apoptosis. In immunoincompetent BALB/c nude mice bearing a human GBM xenograft, the administration of ISA27 in vivo activated p53, inhibited cell proliferation and induced apoptosis in tumor tissue. Significantly, ISA27 was non-toxic in an in vitro normal human cell model and an in vivo mouse model. ISA27 administration in combination with temozolomide (TMZ) produced a synergistic inhibitory effect on GBM cell viability in vitro, suggesting the possibility of lowering the dose of TMZ used in the treatment of GBM. In conclusion, our data show that ISA27 releases the powerful antitumor capacities of p53 in GBM cells. The use of this MDM2 inhibitor could become a novel therapy for the treatment of GBM patients.  相似文献   

12.
Myoblast proliferation and differentiation are essential for skeletal muscle regeneration. Myoblast proliferation is a critical step in the growth and maintenance of skeletal muscle. The precise action of inorganic arsenic on myoblast growth has not been investigated. Here, we investigated the in vitro effect of inorganic arsenic trioxide (As2O3) on the growth of C2C12 myoblasts. As2O3 decreased myoblast growth at submicromolar concentrations (0.25–1 μM) after 72 h of treatment. Submicromolar concentrations of As2O3 did not induce the myoblast apoptosis. Low-concentration As2O3 (0.5 and 1 μM) significantly suppressed the myoblast cell proliferative activity, which was accompanied by a small proportion of bromodeoxyuridine (BrdU) incorporation and decreased proliferating cell nuclear antigen (PCNA) protein expression. As2O3 (0.5 and 1 μM) increased the intracellular arsenic content but did not affect the reactive oxygen species (ROS) levels in the myoblasts. Cell cycle analysis indicated that low-concentrations of As2O3 inhibited cell proliferation via cell cycle arrest in the G1 and G2/M phases. As2O3 also decreased the protein expressions of cyclin D1, cyclin E, cyclin B1, cyclin-dependent kinase (CDK) 2, and CDK4, but did not affect the protein expressions of p21 and p27. Furthermore, As2O3 inhibited the phosphorylation of Akt. Insulin-like growth factor-1 significantly reversed the inhibitory effect of As2O3 on Akt phosphorylation and cell proliferation in the myoblasts. These results suggest that submicromolar concentrations of As2O3 alter cell cycle progression and reduce myoblast proliferation, at least in part, through a ROS-independent Akt inhibition pathway.  相似文献   

13.
14.
Arsenic trioxide (As2O3) exhibits potent antitumor effects in vitro and in vivo, but the precise mechanisms by which it generates such responses are not well understood. We provide evidence that As2O3 is a potent inducer of autophagy in leukemia cells. Such induction of autophagy by As2O3 appears to require activation of the MEK/ERK pathway but not the AKT/mammalian target of rapamycin or JNK pathways. In efforts to understand the functional relevance of arsenic-induced autophagy, we found that pharmacological inhibitors of autophagy or molecular targeting of beclin 1 or Atg7 results in reversal of the suppressive effects of As2O3 on leukemic cell lines and primary leukemic progenitors from acute myelogenous leukemia patients. Altogether, our data provide direct evidence that autophagic cell death is critical for the generation of the effects of As2O3 on acute myelogenous leukemia cells and raise the potential of modulation of elements of the autophagic machinery as an approach to enhance the antitumor properties of As2O3 and possibly other heavy metal derivatives.  相似文献   

15.
16.
17.
18.
Myc: a weapon of mass destruction   总被引:11,自引:0,他引:11  
Secombe J  Pierce SB  Eisenman RN 《Cell》2004,117(2):153-156
Growth and proliferation potentiated by deregulated myc oncogene expression is balanced by myc-induced apoptosis. Abrogation of this apoptotic pathway in Myc overexpressing cells leads to cancer progression. Recent work has shown that cell clones in the Drosophila wing disc with higher dMyc expression levels act as supercompetitors to potentiate the programmed death of surrounding normal cells. Yet another paper identifies dE2F1 as a critical component of pathways that normally restrict the ability of growth perturbing genes like dMyc to cause organ overgrowth.  相似文献   

19.
20.
The mechanism of action of arsenic trioxide (ATO) has been shown to be complex, influencing numerous signal transduction pathways and resulting in a vast range of cellular effects. Among these mechanisms of action, ATO has been shown to cause acute vascular shutdown and massive tumor necrosis in a murine solid tumor model like vascular disrupting agent (VDA). However, relatively little is understood about this VDA-like property and its potential utility in developing clinical regimens. We focused on this VDA-like action of ATO. On the basis of the endothelial cell cytotoxicity assay and tubulin polymerization assay, we observed that higher concentrations and longer treatment with ATO reduced the level of α- and β-tubulin and inhibited the polymerization of tubulin. The antitumor action and quantitative tumor perfusion studies were carried out with locally advanced murine CT26 colon carcinoma grown in female BALB/c mice. A single injection of ATO intraperitoneally displayed central necrosis of the tumor tissue by 24 hours. T1-weighted dynamic contrast-enhanced magnetic resonance image revealed a significant decrease in tumor enhancement in the ATO-treated group. Similar to other VDAs, ATO treatment alone did not delay the progression of tumor growth; however, ATO treatment after injection of other cytotoxic agent (irinotecan) showed significant additive antitumor effect compared to control and irinotecan alone therapy. In summary, our data demonstrated that ATO acts as a VDA by means of microtubule depolymerization. It exhibits significant vascular shutdown activity in CT26 allograft model and enhances antitumor activity when used in combination with another cytotoxic chemotherapeutic agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号