首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of zinc in caspase activation and apoptotic cell death   总被引:15,自引:0,他引:15  
In addition to its diverse role in many physiological systems, zinc (Zn) has now been shown to be an important regulator of apoptosis. The purpose of this review is to integrate previously published knowledge on Zn and apoptosis with current attempts to elucidate the mechanisms of action of this biometal. This paper begins with an introduction to apoptosis and then briefly reviews the evidence relating Zn to apoptosis. The major focus of this review is the mechanistic actions of Zn and its candidate intracellular targets. In particular, we examine the cytoprotective functions of Zn which suppress major pathways leading to apoptosis, as well as the more direct influence of Zn on the apoptotic regulators, especially the caspase family of enzymes. These two mechanisms are closely related since a decline in intracellular Zn below a critical threshold level may not only trigger pathways leading to caspase activation but may also facilitate the process by which the caspases are activated. Studies by our laboratory in airway epithelial cells show that Zn is co-localized with the precursor form of caspase-3, mitochondria and microtubules, suggesting this Zn is critically placed to control apoptosis. Further understanding the different pools of Zn and how they interact with apoptotic pathways should have importance in human disease.  相似文献   

2.
Recent data suggest that alpha-toxin, the major hemolysin of Staphylococcus aureus, induces cell death via the classical apoptotic pathway. Here we demonstrate, however, that although zVAD-fmk or overexpression of Bcl-2 completely abrogated caspase activation and internucleosomal DNA fragmentation, they did not significantly affect alpha-toxin-induced death of Jurkat T or MCF-7 breast carcinoma cells. Caspase inhibition had also no effect on alpha-toxin-induced lactate dehydrogenase release and ATP depletion. Furthermore, whereas early assessment of apoptosis induction by CD95 resulted solely in the generation of cells positive for active caspases that were, however, not yet permeable for propidium iodide, a substantial proportion of alpha-toxin-treated cells were positive for both active caspases and PI. Finally, electron microscopy demonstrated that even in the presence of active caspases, alpha-toxin-treated cells displayed a necrotic morphology characterized by cell swelling and cytoplasmic vacuolation. Together, our data suggest that alpha-toxin-induced cell death proceeds even in the presence of activated caspases, at least partially, in a caspase-independent, necrotic-like manner.  相似文献   

3.
The initial activation of a caspase in a caspase cascade is a crucial event that determines whether a cell will ultimately undergo cell death. Although each cell contains a number of different caspases, only a small subset may be required for apoptosis in response to a specific stimulus. It now seems that each caspase cascade has two types of caspases involved, the upstream or class I caspases, and the downstream or class II caspases. Class I caspases are characterised by long amino-terminal prodomains that carry specific protein - protein interaction domains which mediate oligomerisation of caspases, often assisted by specific adaptor molecules. Oligomerisation appears to be sufficient for autocatalytic activation of class I caspases. Once the first caspase in the pathway has been activated, it processes downstream caspases initiating a cascade of amplifying events that lead to the apoptotic death of a cell. This article reviews our current understanding of mechanisms that mediate the activation of caspases.  相似文献   

4.
CD47 or integrin-associated protein promotes cell death in blood and tumor cells. Recently, CD47 signaling has been identified in neurons as well. In this study, we investigated the role of CD47 in neuronal cell death. Exposure of primary mouse cortical neurons to the CD47 ligand thrombospondin-1 or the specific CD47-activating peptide 4N1K induced cell death. Activation of CD47 elevated levels of active caspase 3 and increased the generation of reactive oxygen species (ROS) in a time-dependent manner. Both ROS scavengers and caspase inhibitors attenuated cell death. But ROS scavenging did not reduce the activation of caspase 3, and combination treatments with a caspase inhibitor plus free radical scavenger did not yield additive protection. Taken together, these data suggest that parallel and redundant pathways of oxidative stress and caspase-mediated cell death are involved. We conclude that CD47 mediates neuronal cell death through caspase-dependent and caspase-independent pathways.  相似文献   

5.
We describe an enzyme-linked immunosorbent assay (ELISA) for quantifying relative amounts of active caspase 3 in apoptotic cells. Covalent modification of caspase 3 active sites with a biotinylated inhibitor differentiates active from latent caspases. Capture on an ELISA plate with an antibody specific for caspase 3 makes the assay specific for caspase 3. Detection is with horseradish peroxidase (HRP)-conjugated streptavidin that binds to the biotinylated inhibitor covalently bound to caspase 3. Using the assay we detected 6.6 ng active caspase 3 per 10(6) apoptotic staurosporine-treated Jurkat cells. Specificity of the assay for caspase 3 was demonstrated by lack of signal with purified caspases 2, 7, 8, and 10 that were modified by a biotinylated inhibitor. Specificity was also demonstrated by lack of signal with apoptotic MCF-7 cells which do not express caspase 3. The ability to discriminate between active and latent caspase 3 was shown by Western blotting with HRP-streptavidin and anti-caspase 3. Although latent caspase 3 was captured it was not covalently modified with the biotinylated inhibitor. The basic principle of using a covalent inhibitor to identify active enzymes and an antibody to differentiate between enzymes with similar activities has potential for quantifying active members of many classes of enzymes.  相似文献   

6.
Complestatin, a bicyclo hexapeptide from Streptomyces, was isolated as a possible regulator of neuronal cell death. In this study, we report an anti-apoptotic activity of complestatin and its underlying molecular mechanism. Complestatin blocked TRAIL (TNF-related apoptosis-inducing ligand)-induced apoptosis and activation of caspase-3 and -8 at micromolar concentration levels without inhibiting the catalytic activities of these caspases. Complestatin potently induced a rapid and sustained AKT/PKB activation and Bad phosphorylation, resulting in inhibition of mitochondrial cytochrome c release. These anti-apoptotic activities of complestatin were significantly abrogated in cells expressing dominant negative AKT/PKB. Taken together, our results suggest that complestatin prevents apoptotic cell death via AKT/PKB-dependent inhibition of the mitochondrial apoptosis signal pathway. The novel property of complestatin may be valuable for developing new pharmaceutical means that will control unwanted cell death.  相似文献   

7.
Folliculogenesis modulation via distinct neurotransmitters is a well-documented phenomenon. Intraovarian purinergic signaling mechanisms have been identified previously in different species. However, the molecular elements involved and the physiological role of this purinergic signaling remain to be elucidated. Here, studies using RT-PCR amplification, immunoblotting, and immunofluorescence microscopy showed that murine and porcine ovaries express the P2X7 subtype receptor, a cationic receptor-channel operated by ATP. Using immunofluorescence it was demonstrated that P2X7 protein expression, in both mouse and pig, occurs specifically in the theca cells from antral follicles. Isolated porcine theca cells maintained in primary cultures and tested with 1 mM ATP or 250 microM Bz-ATP, a specific agonist of P2X7, responded with an increase in intracellular calcium concentration, as demonstrated in cells loaded with fluo-4 as calcium indicator. This strongly suggested that P2X7 receptors in theca cells are functional. Moreover, application for 24 hr of 1 mM ATP or 250 microM Bz-ATP induced apoptotic cell death as indicated by the DNA fragmentation pattern, positive TUNEL test, and annexin V binding. This ATP effect was antagonized by 300 microM PPADS and 200 microM oxidized ATP. Also, addition of 5 mM EGTA in the external medium to chelate free Ca++ decreased death cell to 24% of that produced by 200 microM Bz-ATP, suggesting that Ca++ influx participates in the phenomenon. The highly specific and functional expression of P2X7 receptors in theca cells suggest a role for ATP in modulating follicular physiology.  相似文献   

8.
We have studied glial activation in rat cerebellar neuronal-glial cultures after inducing neuronal death using various stimuli. Cultures were exposed to 100 microm glutamate for 20 min, which induces excitotoxic neuronal death, or to potassium/serum deprivation, which induces apoptosis of granule neurons. We evaluated alterations in several parameters related to glial activation: nuclear factor-kappaB activation, nitric oxide and tumour necrosis factor-alpha production, which are associated with a pro-inflammatory response, glial proliferation and phagocytic activity. Although the two experimental models of neuronal damage resulted in the death of most neuronal cells within 24 h, differences were observed in the response of the various glial parameters evaluated. While nitric oxide production was not detected in any case, tumour necrosis factor-alpha production, nuclear factor-kappaB activation and glial proliferation were only induced in the presence of excitotoxic neuronal death. However, phagocytosis was induced in both cases, although earlier in the case of apoptotic neuronal death. These results show that glial cells respond to excitotoxic neuronal death with an inflammatory response associated with proliferation and phagocytosis. In contrast, whilst glial cells do not produce pro-inflammatory molecules in the presence of apoptotic neuronal death, phagocytic activity is rapidly induced.  相似文献   

9.
Prolonged ERK/MAPK activation has been implicated in neuronal cell death in vitro and in vivo. We found that HEK293 cells, recently reported to express neuronal markers, are exquisitely sensitive to long term ERK stimulation. Activation of an inducible form of Raf-1 (Raf-1:ER) in HEK293 cells induced massive apoptosis characterized by DNA degradation, loss of plasma membrane integrity and PARP cleavage. Cell death required MEK activity and protein synthesis and occurred via the death receptor pathway independently of the mitochondrial pathway. Accordingly, prolonged ERK stimulation activated caspase 8 and strongly potentiated Fas signaling. The death receptor adaptator FADD was found to be rapidly induced upon ERK activation. However using RNA interference and ectopic expression, we demonstrated that neither FADD nor Fas were necessary for caspase 8 activation and cell death. These findings reveal that prolonged ERK/MAPK stimulation results in caspase 8 activation and cell death. This work was supported by grant from Association pour la Recherche sur le Cancer (CNRS6543/ARC). S. Cagnol is supported by a fellowship from the Ligue Nationale contre le Cancer.  相似文献   

10.
Mitochondrial outer membrane permeabilization and the release of intermembrane space proteins, such as cytochrome c, are early events during intrinsic (mitochondria-mediated) apoptotic signaling. Although this process is generally accepted to require the activation of Bak or Bax, the underlying mechanism responsible for their activation during true intrinsic apoptosis is not well understood. In the current study, we investigated the molecular requirements necessary for Bak activation using distinct clones of Bax-deficient Jurkat T-lymphocytes in which the intrinsic pathway had been inhibited. Cells stably overexpressing Bcl-2/Bcl-x(L) or stably depleted of Apaf-1 were equally resistant to apoptosis induced by the DNA-damaging anticancer drug etoposide as determined by phosphatidylserine externalization and caspase activation. Strikingly, characterization of mitochondrial apoptotic events in all three drug-resistant cell lines revealed that, without exception, resistance to apoptosis was associated with an absence of Bak activation, cytochrome c release, and mitochondrial membrane depolarization. Furthermore, we found that etoposide-induced apoptosis and mitochondrial events were inhibited in cells stably overexpressing either full-length X-linked inhibitor of apoptosis protein (XIAP) or the BIR1/BIR2 domains of XIAP. Combined, our findings suggest that caspase-mediated positive amplification of initial mitochondrial changes can determine the threshold for irreversible activation of the intrinsic apoptotic pathway.  相似文献   

11.
The present work examines the effect of membrane lipid composition on activation of extracellular signal-regulated protein kinases (ERK) and cell death following oxidative stress. When subjected to 50 microM docosahexaenoic acid (DHA, 22 : 6 n-3), cellular phospholipids of OLN 93 cells, a clonal line of oligodendroglia origin low in DHA, were enriched with this polyunsaturated fatty acid. In the presence of 1 mM N,N-dimethylethanolamine (dEa) a new phospholipid species analog was formed in lieu of phosphatidylcholine. Exposure of DHA-enriched cells to 0.5 mM H2O2, caused sustained activation of ERK up to 24 h. At this time massive apoptotic cell death was demonstrated by ladder and TUNEL techniques. H2O2-induced stress applied to dEa or DHA/dEa co-supplemented cells showed only a transient ERK activation and no cell death after 24 h. Moreover, while ERK was rapidly translocated into the nucleus in DHA-enriched cells, dEa supplements completely blocked ERK nuclear translocation. This study suggests that H2O2-induced apoptotic cell death is associated with prolonged ERK activation and nuclear translocation in DHA-enriched OLN 93 cells, while both phenomena are prevented by dEa supplements. Thus, the membrane lipid composition ultimately modulates ERK activation and translocation and therefore can promote or prevent apoptotic cell death.  相似文献   

12.
A rapid and quantitative method for measuring the activity and fractional inhibition of enzymes within their natural cellular environment remains an unmet need in drug discovery. We describe the use of a nonradioactive quantitative enzyme-linked immunosorbent assay (ELISA) for measuring intracellular caspase activity that is amenable to robotic automation. The ELISA specifically detects active-caspase-3 and was used to correlate the in-cell activity of caspase-3 with the progress of caspase-3-mediated events under varying concentrations of caspase-3 inhibitors in NT2 cells. We examined the cleavage of endogenous substrates (poly(ADP-ribose)polymerase and alphaII-spectrin), the extent of DNA fragmentation, and the autocatalytic removal of the caspase-3 prodomain as markers of caspase-3 activity. To impart inhibition of the downstream markers, a greater level of caspase-3 inhibition was required. Although the functional markers were found not to accurately predict intracellular caspase-3 activity, we found that the inhibition of intracellular caspase-3 was highly correlated (R(2) = 0.96) to the inhibition of DNA fragmentation. Also, by comparing the potency of the different inhibitors against the intracellular enzyme versus the purified enzyme, the effects of inhibitor functional groups on whole-cell activity were addressed.  相似文献   

13.
14.
Anandamide (arachidonoylethanolamide or AEA) is an endocannabinoid that acts at vanilloid (VR1) as well as at cannabinoid (CB1/CB2) and NMDA receptors. Here, we show that AEA, in a dose-dependent manner, causes cell death in cultured rat cortical neurons and cerebellar granule cells. Inhibition of CB1, CB2, VR1 or NMDA receptors by selective antagonists did not reduce AEA neurotoxicity. Anandamide-induced neuronal cell loss was associated with increased intracellular Ca(2+), nuclear condensation and fragmentation, decreases in mitochondrial membrane potential, translocation of cytochrome c, and upregulation of caspase-3-like activity. However, caspase-3, caspase-8 or caspase-9 inhibitors, or blockade of protein synthesis by cycloheximide did not alter anandamide-related cell death. Moreover, AEA caused cell death in caspase-3-deficient MCF-7 cell line and showed similar cytotoxic effects in caspase-9 dominant-negative, caspase-8 dominant-negative or mock-transfected SH-SY5Y neuroblastoma cells. Anandamide upregulated calpain activity in cortical neurons, as revealed by alpha-spectrin cleavage, which was attenuated by the calpain inhibitor calpastatin. Calpain inhibition significantly limited anandamide-induced neuronal loss and associated cytochrome c release. These data indicate that AEA neurotoxicity appears not to be mediated by CB1, CB2, VR1 or NMDA receptors and suggest that calpain activation, rather than intrinsic or extrinsic caspase pathways, may play a critical role in anandamide-induced cell death.  相似文献   

15.
We previously reported that infection with the periodontopathic bacterium Actinobacillus actinomycetemcomitans induced apoptosis in a mouse macrophage cell line J774.1. In the present study, we examined the involvement of cytochrome c and caspases in the induction of apoptosis in A. actinomycetemcomitans-infected J774.1 cells. Following infection, the expression levels of cytochrome c, and cleaved forms of caspase-3 and caspase-9 in the cells were examined using immunoblot analysis. Cytochrome c was released from mitochondria into the cytoplasm after A. actinomycetemcomitans-infected J774.1 cells were cultured for 6 h, and caspase-3 and caspase-9 were found to be cleaved forms in the cells. Further, caspase-9 activity was markedly increased, and phosphorylated p53 was detected in the cells 30 h following infection. These results suggest that apoptosis in A. actinomycetemcomitans-infected J774.1 cells is regulated by the release of cytochrome c from mitochondria into cytoplasm and the subsequent activation of caspases through phosphorylation of p53.  相似文献   

16.
L-Canavanine, a natural L-arginine analog, is known to possess cytotoxicity to tumor cells in culture and experimental tumors in vivo. In this study, we first show that apoptotic cell death is associated with antitumor activity of L-canavanine against human acute leukemia Jurkat T cells. When Jurkat T cells were treated with 1.25-5.0mM L-canavanine for 36 h, apoptotic cell death accompanying several biochemical events such as caspase-3 activation, degradation of poly(ADP-ribose) polymerase (PARP), and apoptotic DNA fragmentation was induced in a dose-dependent manner; however, cytochrome c release from mitochondria was not detected. Under these conditions, the expression of Bcl-2 and its functional homolog Bcl-xL was markedly upregulated. The L-canavanine-induced caspase-3 activation, degradation of PARP, and apoptotic DNA fragmentation were suppressed by ectopic expression of Bcl-2 or Bcl-xL, both of which are known to play roles as anti-apoptotic regulators. These results demonstrate that the cytotoxic effect of L-canavanine on Jurkat T cells is attributable to the induced apoptosis and that L-canavanine-induced apoptosis is mediated by a cytochrome c-independent caspase-3 activation pathway that can be interrupted by Bcl-2 or Bcl-xL.  相似文献   

17.
Caspase malfunction in stem cells often precedes the appearance and progression of multiple types of cancer, including human colorectal cancer. However, the caspase‐dependent regulation of intestinal stem cell properties remains poorly understood. Here, we demonstrate that Dronc, the Drosophila ortholog of caspase‐9/2 in mammals, limits the number of intestinal progenitor cells and their entry into the enterocyte differentiation programme. Strikingly, these unexpected roles for Dronc are non‐apoptotic and have been uncovered under experimental conditions without epithelial replenishment. Supporting the non‐apoptotic nature of these functions, we show that they require the enzymatic activity of Dronc, but are largely independent of the apoptotic pathway. Alternatively, our genetic and functional data suggest that they are linked to the caspase‐mediated regulation of Notch signalling. Our findings provide novel insights into the non‐apoptotic, caspase‐dependent modulation of stem cell properties that could improve our understanding of the origin of intestinal malignancies.  相似文献   

18.
19.
We asked whether the antiangiogenic action of 16K human PRL (hPRL), in addition to blocking mitogen-induced vascular endothelial cell proliferation, involved activation of programmed cell death. Treatment with recombinant 16K hPRL increased DNA fragmentation in cultured bovine brain capillary endothelial (BBE) and human umbilical vein endothelial (HUVE) cells in a time- and dose-dependent fashion, independent of the serum concentration. The activation of apoptosis by 16K hPRL was specific for endothelial cells, and the activity of the peptide could be inhibited by heat denaturation, trypsin digestion, and immunoneutralization, but not by treatment with the endotoxin blocker, polymyxin-B. 16K hPRL-induced apoptosis was correlated with the rapid activation of caspases 1 and 3 and was blocked by pharmacological inhibition of caspase activity. Caspase activation was followed by inactivation of two caspase substrates, poly(ADP-ribose) polymerase (PARP) and the inhibitor of caspase-activated deoxyribonuclease (DNase) (ICAD). Furthermore, 16K hPRL increased the conversion of Bcl-X to its proapoptotic form, suggesting that the Bcl-2 protein family may also be involved in 16K hPRL-induced apoptosis. These findings support the hypothesis that the antiangiogenic action of 16K hPRL includes the activation of programmed cell death of vascular endothelial cells.  相似文献   

20.
Apoptosis and oncotic necrosis in neuronal and glial cells have been documented in many neurological diseases. Distinguishing between these two major types of cell death in different neurological diseases is needed in order to better reveal the injury mechanisms so as to open up opportunities for therapy development. Accumulating evidence suggests apoptosis and oncosis epitomize the extreme ends of a broad spectrum of morphological and biochemical events. Biochemical markers that can distinguish between the calpain and caspase dominated types of cell death would help in this process. In this study, three chemical agents, maitotoxin (MTX), staurosporine (STS) and thylenediaminetetraacetic acid (EDTA), were used to induce different types of cell death in PC12 neuronal-like cells. MTX-induced necrosis, as determined by the increased levels of calpain-specific cleaved fragments of spectrin by antibodies specific to the calpain-cleaved 150 kDa αII-spectrin breakdown product (SBDP150) and 145 kDa αII-spectrin breakdown product (SBDP145). In this paradigm, there were no detectable SBDP150i and SBDP120 fragments as determined by antibodies specific to the caspase-cleaved specific fragments similar to those seen in the EDTA-mediated apoptotic PC-12 cells. In contrast to the calpain specific MTX necrosis treatment and the caspase EDTA apoptotic treatment is the STS treatment which induced both proteases as shown by the increase in all the SBDP fragments. Furthermore, compared to SBDP150, SBDP145 appears to be a more specific and sensitive biomarker for calpain activation. Taken together, our results suggested calpains and caspases which dominate the two major types of cell death could be independently discriminated by specifically examining the multiple αII-spectrin cleavage breakdown products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号