首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
微生物法去除水中氯苯类化合物的研究进展   总被引:3,自引:1,他引:3  
氯苯类化合物是水环境污染中的主要污染物之一,本文主要介绍了目前国内外微生物法处理水中氯苯类化合物的最新研究成果,包括氯苯类化合物的微生物好氧降解、厌氧降解,共代谢、生物活性炭以及生物处理工艺等,并展望了该领域今后的研究方向.  相似文献   

2.
氯苯类化合物是水环境污染中的主要污染物之一, 本文主要介绍了目前国内外微生物法处理水中氯苯类化合物的最新研究成果, 包括氯苯类化合物的微生物好氧降解、厌氧降解、共代谢、生物活性炭以及生物处理工艺等, 并展望了该领域今后的研究方向。  相似文献   

3.
微生物降解石油烃的功能基因研究进展   总被引:4,自引:3,他引:1  
微生物对石油烃的降解在自然衰减去除土壤和地下水石油烃污染的过程中发挥了重要作用。微生物通过其产生的一系列酶来利用和降解这类有机污染物,其中,编码关键降解酶的基因称为功能基因。功能基因可作为生物标志物用于分析环境中石油烃降解基因的多样性。因此,研究石油降解功能基因是分析土著微生物群落多样性、评价自然衰减潜力与构建基因工程菌的重要基础。本文主要介绍了烷烃和芳香烃在有氧和无氧条件下的微生物降解途径,重点总结了烷烃和芳香烃降解的主要功能基因及其作用,包括参与羟化作用的单加氧酶和双加氧酶基因、延胡索酸加成反应的琥珀酸合酶基因以及中心中间产物的降解酶基因等。  相似文献   

4.
陈世霞  王雷  韩志英 《生态学杂志》2014,25(10):3056-3066
随着后基因组时代的到来,宏蛋白质组学逐渐兴起并在生命科学基础领域和临床医药领域成功运用,宏蛋白质组学技术现已成为各研究领域炙手可热的方法之一.宏蛋白质组学技术在废水生物处理研究领域中的应用刚起步,但已展示其强大功能.本文主要综述近年来国内外宏蛋白质组学在废水生物处理研究领域的研究进展,回顾及总结了宏蛋白质组学的研究策略及应用,如鉴定功能性蛋白质/酶、揭示污染物的微生物降解途径、推断废水生物处理系统的关键代谢途径、及探讨不同污泥微生物群落微生态变化等.
  相似文献   

5.
水平基因转移是不同于垂直基因转移的遗传物质的交流方式.在污染环境这一特异生态环境中,降解基因的水平转移有着独特的功能与作用.研究环境中污染物降解基因在微生物间的水平转移,更深入地了解微生物种群适应污染环境的机理,对于评价污染物的环境毒理、生物可降解性以及污染环境的可修复潜力具有重要参考价值.在污染物生物修复实践中,可以通过调控降解基因的水平转移,增强污染环境中微生物的降解能力,更有效地发挥生物修复作用.文章将对环境中细菌间基因交流的机制,污染物降解基因的水平转移对微生物适应污染环境的机理、水平基因转移对代谢途径的进化及其对污染物生物修复作用的影响等方面的研究进展做一综述.  相似文献   

6.
随着有机氟化物在各领域的广泛应用,含氟有机废水处理面临巨大挑战。活性污泥作为有机废水处理的核心技术之一,微生物在其中发挥着极其重要的作用。本综述首先聚焦在活性污泥微生物群落多样性、组成、结构和功能及其与含氟废水类型、处理工艺和处理效率之间的关系,进而讨论了功能微生物降解/转化有机氟化物的途径和作用机制,最后展望了结合分离培养降解有机氟化物的关键微生物,以及微生物组学技术解析活性污泥微生物群落构建、互作、代谢等核心问题,以提高对含氟有机废水微生物降解机理的认识,优化含氟有机废水处理工艺。  相似文献   

7.
废气处理生物滤器微生物生态学研究进展   总被引:1,自引:0,他引:1  
废气生物处理是一项新兴的气体污染控制技术,已成为当前环境领域的研究热点.本文概述了生物滤器系统(包括生物过滤器系统和生物滴滤器系统)结构及其去除气体污染物的原理,重点阐述了生物滤器微生物的分离、鉴定及其降解特性,微生物丰度、活性与微生物群落结构多样性之间的相关性,运行条件对微生物群落的影响,微生物群落结构时空变化规律,生物膜形成机理和模型等方面的研究进展,并对今后废气处理生物滤器微生物生态学研究方向进行了展望.  相似文献   

8.
当前社会塑料制品的使用需求持续增加,塑料垃圾处理压力不断增大,减缓塑料污染成为当务之急,生物可降解塑料因可在一定生物活性环境下较快降解而备受关注,具有广阔的应用前景。生物可降解塑料降解条件复杂,影响因素众多,对不同生物可降解塑料降解规律,降解微生物和功能酶的透彻掌握,是实现其全面利用和高效资源化处理处置的基础和前提。文章系统梳理了常见生物可降解塑料的种类、性能、优缺点和主要用途,全面综述了生物可降解塑料的降解机理、降解微生物和功能酶,以及生物可降解塑料在不同环境条件下的降解周期和程度,以期为生物可降解塑料的微生物降解研究提供借鉴,为生物可降解塑料废弃物的高效处理处置和彻底降解提供科学参考。  相似文献   

9.
低温高效油脂降解菌的分离筛选驯化   总被引:4,自引:0,他引:4  
在我国北方地区冬季水温偏低, 低温是造成寒冷地区冬季含油脂污水处理效果差的主要原因。当温度降低至4°C左右时, 污水的生物处理普遍存在着处理效果差, 出水难以达标的问题。而微生物法是处理油脂污染物的一种最有效、最安全和最彻底的方法。因此本文从微生物学角度对此进行了研究, 从自然界中分离、筛选到了8 株能在5°C下生长并能降解生活污水中油脂的低温菌。  相似文献   

10.
石油化工产品的不合理处置与泄漏导致石油及其衍生物大量释放到环境中,由此造成的环境污染问题日益严重,石油污染已成为全球性公害之一。微生物修复技术凭借其成本低、环境友好等优势,广泛应用于石油污染的治理。大量研究表明功能微生物群落在石油污染生态系统的修复体系中发挥了重要的作用。其中,细菌是最主要、最活跃的石油降解微生物。然而,在原位/异位生物修复过程中,存在功能菌群在污染体系中难维持、易失调及石油烃降解途径不明晰等问题。因此,本文总结了石油污染自然生态系统和微宇宙实验体系中的细菌群落结构、石油烃代谢机制及相关功能基因,并对微生物法处理石油污染的未来研究方向提出展望,为石油污染场地生物修复方案的制定提供理论参考。  相似文献   

11.
高效的微生物菌种在废水生化处理中是保证高处理效率的关键。从处理糖蜜酒精废水的活性污泥中,经驯化、分离纯化,筛选到一株能在以糖蜜酒精废水为唯一碳源进行生长的微生物菌株,生理生化和16S r DNA基因序列分析初步鉴定为赖氨酸芽孢杆菌属,命名为Lysinibacilus sp.S6。该菌株在糖蜜酒精废水COD浓度为105 851.15 mg/L,温度为37℃左右,不添加任何微量元素的情况下,COD去除效果较为理想,48 h可达64.22%。此外,该菌还具有一定的脱氮除磷作用。Lysinibacilus sp.S6在糖蜜酒精废水的微生物处理中有很好的应用前景。  相似文献   

12.
Guo J  Zhou J  Wang D  Yang J  Li Z 《Biodegradation》2008,19(1):93-98
The accelerating effect of quinones has been studied in the bio-decolorization processes, but there are no literatures about the incorporation bio-treatment technology of the bromoamine acid (BA) wastewater and azo dyes wastewaters under high-salt conditions (NaCl, 15%, w/w). Here we described the BA wastewater as a redox mediator in the bio-decolorization of azo dye wastewaters. Decolorization of azo dyes was carried out experimentally using the salt-tolerant bacteria under the BA wastewater and high-salt conditions. The BA wastewater used as a redox mediator was able to increase the decolorization rate of wastewater containing azo dyes. The effects of various operating conditions such as dissolved oxygen, temperature, and pH on microbial decolorization were investigated experimentally. At the same time, BA was tested to assess the effects on the change of the Oxidation–Reduction Potential (ORP) values during the decolorization processes. The experiments explored a great improvement of the redox mediator application and the new bio-treatment concept.  相似文献   

13.
嗜冷产甲烷菌及其在废水厌氧处理中的应用   总被引:6,自引:0,他引:6  
左剑恶  邢薇 《应用生态学报》2007,18(9):2127-2132
嗜冷产甲烷菌对于自然界的碳素循环具有非常重要的意义,近年来引起了国内外学者的广泛关注.利用嗜冷产甲烷菌实现低温厌氧生物处理过程,可从本质上突破低温厌氧工艺的技术瓶颈,进而大大拓展厌氧生物处理技术的应用范围并降低废水处理的成本.本文针对研究者广泛关注的热点问题,从分离培养及生理生化特性、适冷机制和分子生物学研究几个方面,对嗜冷产甲烷菌的研究进展进行了全面的综述,并对其在低温厌氧生物处理技术中的应用前景进行了分析和展望.  相似文献   

14.
Pigments in molasses wastewater (MWW) effluent, such as melanoidins, were considered as kinds of the most recalcitrant and hazardous colorant contaminants to the environment. In this study, de-coloring the MWW by a synergistic combination of micro-electrolysis with bio-treatment was performed. Aiming to a high de-colorization yield, levels of nutrition source supplies, MWW dilution ratio, and micro-electrolysis reaction time were optimized accordingly. For a diluted (50 %, v/v) MWW, an maximum overall de-colorization yield (97.1 ± 0.5 %, for absorbance at 475 nm) was achieved through the bio-electrolysis treatment. In electrolysis bio-treatment, the positive effect of micro-electrolysis was also revealed by a promoted growth of fungal biomass as well as activities of ligninolytic enzymes. Activities of lignin peroxidase, manganese peroxidase, and laccase were promoted by 111.2, 103.9, and 7.7 %, respectively. This study also implied that the bio-treatment and the micro-electrolysis had different efficiencies on removal of pigments with distinct polarities.  相似文献   

15.
Dairy wastewater containing different oil and grease contents was treated in batch activated sludge systems with and without (control) an enzymatic pre-hydrolysis stage [with 0.2% (w/v) of fermented babassu cake containing Penicillium restrictum lipases]. When the oil and grease concentration in the control bioreactor was increased (400, 600 and 800 mg l–1), the COD removal efficiency fell (86%, 75% and 0%). However, in the reactor fed with pre-hydrolysed wastewater, COD removal efficiency was maintained (93%, 92% and 82%). At an oil and grease concentration of 800 mg l–1, the control bioreactor presented final volatile suspended solids (VSS) values ten times greater (2225 mg l–1) than those obtained for bioreactor fed with pre-hydrolysed wastewater (200 mg l–1).  相似文献   

16.
The main purpose of this paper is to study naphthalene (NAP) biodegradation by acclimated activated sludge, employing the culture-enrichment method in a continuous flow bioreactor of the wastewater treatment process. The effects of various COD loadings and influent flow rates of an artificial wastewater containing 15 mg l−1 NAP on the biodegradation rates of the activated sludge will be investigated, in order to determine the biodegradation kinetics and minimum mean cell residence time of the activated sludge. From the experimental results, it was found that the resulting enriched activated sludge follows the growth rate of the Monod type and can biodegrade those COD and NAP loadings in the influents efficiently, and its bio-treatment efficiency on NAPs increases with the decrease of influent flow rate. The sludge volume index (SVI) of the resulting enriched activated sludge meets the design value required by the convectional activated sludge process for the treatment of wastewater.  相似文献   

17.
Guo J  Zhou J  Wang D  Tian C  Wang P  Uddin MS 《Biodegradation》2008,19(1):15-19
Halomonas sp strain GTW was newly isolated from coastal sediments contaminated by chemical wastewater and was identified to be a member of the genus Halomonas by 16S rDNA sequence analysis and physical and biochemical tests. The optimal decolorization conditions were as follows: temperature 30°C, pH 6.5.0–8.5, NaCl 10–20% (w/v) and the optimal carbon source was yeast exact. The results of experiments demonstrated that the bacteria could decolorize different azo dyes under high salt concentration conditions, and the decolorization rate of five tested azo dyes could be above 90% in 24 h. The exploitation of the salt-tolerant bacteria in the bio-treatment system would be a great improvement of conventional biological treatment systems and the bio-treatment concept.  相似文献   

18.
Anaerobic co-digestion of grease trap and sewage sludge from a wastewater treatment plant is evaluated. Enzyme-lipase application, both addition and dosage, are evaluated by fitting the methane production of biochemical potential tests with the first order model. The enzyme addition effect, at 2, 5 and 10% of grease trap (%GT VSFED?1) and the enzymes doses, between 0.25 and 1.67% (v/v), without and with grease trap presence were studied. Grease trap addition showed a negative effect on the waste biodegradability, which was completely overcome by the addition of lipase. Enzyme addition improved notably the methane production for all grease trap fractions studied. In regards to the dosage, the best result was achieved between 0.33 and 0.83% (v/v) of enzyme. The co-digestion of sewage sludge and grease trap may be a feasible process by using lipases due to the saving in operational costs and the increase in the biogas production  相似文献   

19.
Pseudomonas sp. (L1), P. diminuta(L2) were among eight bacterial strains isolated from vegetable grease and oil-contaminated industrial wastewater, four of which only were found to have the ability to degrade oil and grease. They were identified and investigated for oil and grease degradation either individually or in combinations in previous unpublished work by the authors. Since the combination M1 (Pseudomonas sp. andP. diminuta) produced the highest degradative activity, it was used in the present study in a biofilm sand filter system for vegetable oil and grease removal. This system was tested either as one unit or two units in sequence where different flow rates (30, 50, 100 ml/h) were applied compared to a control unit(s). Results showed that both biofilm systems reduced oily wastewater, even in cases of high degree of pollution (fat, oil & grease (FOG), 7535 ppm; biochemical oxygen demand (BOD5), 525 ppm; chemical oxygen demand (COD), 1660 ppm). Results also showed a removal of FOG with efficiency at 100%; BOD5 at 95.9% and COD at 96%, at 50 ml/h flow rate using one unit of biofilm system. On using two units in sequence, a complete removal of FOG, BOD5 and COD with efficiency 100%, at flow rate 100 ml/h was achieved. In conclusion, the previous biofilm results indicated the efficiency of such a system in treating oily polluted wastewater (vegetable oil origin) on the basis of bacterial isolates being used, the optimum flow rate, and the number of biofilm units used in sequence to obtain the highest removal capacity of such a system. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The effect of a lipase-rich fungal enzymatic preparation, produced by a Penicillium sp. during solid-state fermentation, was evaluated in an anaerobic digester treating dairy wastewater with 1200 mg of oil and grease/L. The oil and grease hydrolysis step was carried out with 0.1% (w/v) of solid enzymatic preparation at 30 °C for 24 h, and resulted in a final free acid concentration eight times higher than the initial value. The digester operated in sequential batches of 48 h at 30 °C for 245 days, and had high chemical oxygen demand (COD) removal efficiencies (around 90%) when fed with pre-hydrolyzed wastewater. However, when the pre-hydrolysis step was removed, the anaerobic digester performed poorly (with an average COD removal of 32%), as the oil and grease accumulated in the biomass and effluent oil and grease concentration increased throughout the operational period. PCR-DGGE analysis of the Bacteria and Archaea domains revealed remarkable differences in the microbial profiles in trials conducted with and without the pre-hydrolysis step, indicating that differences observed in overall parameters were intrinsically related to the microbial diversity of the anaerobic sludge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号