共查询到20条相似文献,搜索用时 0 毫秒
1.
Pierre-Paul Rompr 《Peptides》1995,16(8):1417-1420
The curve shift method and the brain stimulation reward paradigm were used to dissociate reward and performance changes and determine whether unilateral ICV microinjection of neurotensin (3, 10, and 30 μg/10 μl) produces neuroleptic- or psychostimulant-like effect on a dopamine-dependent behavior. At the highest dose tested, neurotensin potentiated brain stimulation reward, producing a significant time-dependent decrease in frequency threshold. Neurotensin also suppressed maximal rate of responding at every dose tested, suggesting that it was more effective at attenuating performance capability. These results suggest that a centrally acting neurotensin receptor agonist may specifically stimulate dopamine-dependent behaviors, producing psychostimulant-like effect that can be attenuated or masked by a suppression of performance capability. 相似文献
2.
The prelimbic area of rat medial frontal cortex may be functionally analogous to human/primate dorsolateral prefrontal cortex. This area may be involved in selective attention to the external stimuli and the coupling of the attention to a repertory of actions. It was suggested that this function may rely on a form of long-term memory [Biol. Rev. 77 (2002) 563]. Indeed, during learning of this type of behavior, a portion of prelimbic neurons persistently change their firing characteristics [Prog. Brain Res. 126 (2000) 287]. It is therefore important to study long-term potentiation (LTP) and depression (LTD) in rat prelimbic neurons. In this article, the author first briefly reviews recent findings on the prefrontal cortex function and discusses that the prefrontal cortex may be involved in long-term memory. Second, the author will show some new results which indicate that quasi-physiological patterns of stimuli mimicking prelimbic neuronal activity during behavior can induce LTP in prelimbic pyramidal neuron synapses. These results suggest that prelimbic neuronal activity during behavior may lastingly modify prelimbic synaptic efficacy. 相似文献
3.
Ja-Hyun Baik 《BMB reports》2013,46(11):519-526
Dopamine (DA) regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DA signaling in mesolimbic neurotransmission are widely believed to modify reward-related behaviors and are therefore closely associated with drug addiction. Recent evidence now suggests that as with drug addiction, obesity with compulsive eating behaviors involves reward circuitry of the brain, particularly the circuitry involving dopaminergic neural substrates. Increasing amounts of data from human imaging studies, together with genetic analysis, have demonstrated that obese people and drug addicts tend to show altered expression of DA D2 receptors in specific brain areas, and that similar brain areas are activated by food-related and drug-related cues. This review focuses on the functions of the DA system, with specific focus on the physiological interpretation and the role of DA D2 receptor signaling in food addiction. [BMB Reports 2013; 46(11): 519-526] 相似文献
4.
The neural circuit that underlies the lateral giant fiber (LG)-mediated reflex escape in crayfish has provided findings relating synaptic change to nonassociative learning such as sensitization and habituation. The LGs receive sensory inputs from the primary sensory afferents and a group of mechanosensory interneurons (MSIs). An increase of excitability by suprathreshold repetitive excitation of this circuit, which is similar to Hebbian long-term potentiation (LTP), has been reported [Miller et al. (1987) J Neurosci 7:1081]. This potentiation was previously thought to result from the enhancement of transmission at cholinergic synapses between primary afferents and MSIs but not the electrical synapses onto LG. In this study, we found that potentiation of synaptic signaling at the electrical synapse onto LG can also be induced when the synapse was activated with subthreshold repetitive pulses or with a few strong suprathreshold shocks. LG LTP was induced in the preparation which had received pulses at limited frequency range. Although whether this LTP is involved in the learning process of escape behavior in crayfish is not clear, the intensity and amount of sensory stimulation used here mimicked those that could easily be produced by a predator trying to catch a crayfish and could be of adaptive significance in life. 相似文献
5.
Calcium signals evoked either by action potential or by synaptic activity play a crucial role for the synaptic plasticity within an individual spine. Because of the small size of spine and the indicators commonly used to measure spine calcium activity, calcium function can be severely disrupted. Therefore, it is very difficult to explain the exact relationship between spine geometry and spine calcium dynamics. Recently, it has been suggested that the medium range of calcium which induces long term potentiation leads to the structural stability stage of spines, while very low or very high amount of calcium leads to the long term depression stage which results in shortening and eventually pruning of spines. Here we propose a physiologically realistic computational model to examine the role of calcium and the mechanisms that govern its regulation in the spine morphology. Calcium enters into spine head through NMDA and AMPA channels and is regulated by internal stores. Contribution of this calcium in the induction of long term potentiation and long term depression is also discussed. Further it has also been predicted that the presence of internal stores depletes the total calcium accumulation in cytosol which is in agreement with the recent experimental and theoretical studies. 相似文献
6.
Loes H. Schrama Pierre N. E. de Graan Henk Zwiers Willem Hendrik Gispen 《Journal of neurochemistry》1986,47(6):1843-1848
In the in vitro hippocampal slice preparation a short tetanus induces long-term potentiation (LTP) and an increase in the post hoc phosphorylation of a 52-kDa protein in synaptosomal plasma membranes (SPM) prepared from these slices. This 52-kDa SPM phosphoprotein closely resembles the predominant phosphoprotein in coated vesicles, pp50, with respect to the insensitivity of its phosphorylation to Ca2+/calmodulin and cyclic AMP. This resemblance prompted us to compare in rat brain the 52-kDa SPM protein with pp50 in isolated coated vesicles. Both proteins appear to be very similar on basis of the following criteria: relative molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, peptide mapping, phospho-amino acid content, and isoelectric point. Since coated vesicles are thought to be involved in receptor-mediated endocytosis and membrane recycling, our data suggest that LTP-correlated changes in 52-kDa phosphorylation may reflect increased coated vesicle activity. 相似文献
7.
8.
Wim E. J. M. Ghijsen Elly Besselsen Vincent Geukers Willem Kamphuis Fernando H. Lopes da Silva 《Journal of neurochemistry》1992,59(2):482-486
The effect of long-term potentiation (LTP) on endogenous amino acid release from rat hippocampus slices was studied. LTP was induced in vivo by application of a tetanus (200 Hz, 200 ms) to the Schaffer collateral fibers in unanesthetized rats. Endogenous release of glutamate and gamma-aminobutyric acid (GABA) was investigated 60 min after tetanization in CA1 subslices of potentiated and control rats. No significant effects of LTP were observed in basal and K(+)-induced Ca(2+)-independent release components of these amino acids. In contrast, K(+)-induced Ca(2+)-dependent release of both glutamate and GABA increased approximately 100% in slices from potentiated rats. No differences were observed in total content of glutamate and GABA between the subslices from control and LTP animals. These results suggest a persistent increase in the recruitment of the presynaptic vesicular pool of glutamate and GABA during LTP. 相似文献
9.
Although vocal communication is wide-spread in animal kingdom, the use of learned (in contrast to innate) vocalization is
very rare. We can find it only in few animal taxa: human, bats, whales and dolphins, elephants, parrots, hummingbirds, and
songbirds. There are several parallels between human and songbird perception and production of vocal signals. Hence, many
studies take interest in songbird singing for investigating the neural bases of learning and memory. Brain circuits controlling
song learning and maintenance consist of two pathways — a vocal motor pathway responsible for production of learned vocalizations
and anterior forebrain pathway responsible for learning and modifying the vocalizations. This review provides an overview
of the song organization, its behavioural traits, and neural regulations. The recently expanding area of molecular mapping
of the behaviour-driven gene expression in brain represents one of the modern approaches to the study the function of vocal
and auditory areas for song learning and maintenance in birds. 相似文献
10.
Aaron James Camp Rajiv Wijesinghe 《The international journal of biochemistry & cell biology》2009,41(11):2118-2121
Calretinin is a member of the calcium-binding protein EF-hand family first identified in the retina. As with the other 200-plus calcium-binding proteins, calretinin serves a range of cellular functions including intracellular calcium buffering, messenger targeting, and is involved in processes such as cell cycle arrest, and apoptosis. Calcium-binding proteins including calretinin are expressed differentially in neuronal subpopulations throughout the vertebrate and invertebrate nervous system and their expression has been used to selectively target specific cell types and isolate neuronal networks. More recent experiments have revealed that calretinin plays a crucial role in the modulation of intrinsic neuronal excitability and the induction of long-term potentiation (LTP). Furthermore, selective knockout of calretinin in mice produces disturbances of motor coordination and suggests a putative role for calretinin in the maintenance of calcium dynamics underlying motor adaptation. 相似文献
11.
Altered NMDA receptor trafficking contributes to sleep deprivation-induced hippocampal synaptic and cognitive impairments 总被引:1,自引:0,他引:1
Chen C Hardy M Zhang J LaHoste GJ Bazan NG 《Biochemical and biophysical research communications》2006,340(2):435-440
Recent evidence indicates that continuous wakefulness (sleep deprivation, SD) causes impairments in behavioral performance and hippocampal long-term potentiation (LTP) in animals. However, the mechanisms by which SD impairs long-term synaptic plasticity and cognitive function are not clear. Here, we report that 24-h SD in mice results in impaired hippocampus-dependent contextual memory and LTP and, unexpectedly, in reductions of the surface expression of NMDA receptor (NMDAR) subunit NR1 and NMDAR-mediated excitatory post-synaptic currents at hippocampal perforant path-dentate granule cell synapses. The results suggest that the reduction of functional NMDAR in hippocampal neurons may underlie the SD-induced deficits in hippocampus-dependent contextual memory and long-term synaptic plasticity. 相似文献
12.
The Effects of Opioid Peptides on Dopamine Release in the Nucleus Accumbens: An In Vivo Microdialysis Study 总被引:14,自引:2,他引:14
An involvement of the mesolimbic dopamine (DA) system in mediating the motivational effects of opioids has been suggested. Accordingly, the present study employed the technique of in vivo microdialysis to examine the effects of selective mu-, delta-, and kappa- opioids on DA release in the nucleus accumbens (NAC) of anesthetized rats. Microdialysis probes were inserted into the NAC and perfusates were analyzed for DA and its metabolites, dihydroxyphenylacetic acid (DO-PAC) and homovanillic acid (HVA), using a reverse-phase HPLC system with electrochemical detection for separation and quantification. Intracerebroventricular (i.c.v.) administration of selective mu-opioid [D-Ala2, N-methyl-Phe4, Gly5-ol]-enkephalin (DAMGO) or delta-opioid [D-Pen2, D-Pen5]-enkephalin (DPDPE) agonists, at doses that function as positive reinforcers in rats, resulted in an immediate and significant increase in extracellular DA. DOPAC and HVA levels were also significantly increased. The effects of DAMGO were blocked by the selective mu-antagonist D-Pen-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) whereas those of DPDPE were blocked by the delta-antagonist allyl2-Tyr-Aib-Aib-Phe-Leu-OH (ICI 174,864). In contrast to mu- and delta-agonists, the kappa-agonist N-CH3-Tyr-Gly-Gly-Phe-Leu-Arg-N-CH3-Arg-D-Leu-NHC2H5 (E-2078), a dynorphin analog that produces aversive states, decreased DA release in a biphasic manner. Norbinaltorphimine, a selective kappa-antagonist, could block this effect. These results demonstrate that mu-, delta-, and kappa-opioid agonists differentially affect DA release in the NAC and this action is centrally mediated. 相似文献
13.
Recent studies suggest the existence of primate-like cognitive abilities in corvids. Although the learning abilities of corvids in comparison to other species have been investigated before, little is known on how corvids perform on simple discrimination tasks if tested in experimental settings comparable to those that have been used for studying complex cognitive abilities. In this study, we tested a captive group of 12 ravens (Corvus corax) on four discrimination problems and their reversals. In contrast to other studies investigating learning abilities, our ravens were not food deprived and participation in experiments was voluntary. This preliminary study showed that all ravens successfully solved feature and position discriminations and several of the ravens could solve new tasks in a few trials, making very few mistakes. 相似文献
14.
15.
Mahesh Shivarama Shetty Mahima Sharma Neo Sin Hui Ananya Dasgupta Suma Gopinadhan Sreedharan Sajikumar 《Journal of visualized experiments : JoVE》2015,(103)
Synaptic tagging and capture (STC) and cross-tagging are two important mechanisms at cellular level that explain how synapse-specificity and associativity is achieved in neurons within a specific time frame. These long-term plasticity-related processes are the leading candidate models to study the basis of memory formation and persistence at the cellular level. Both STC and cross-tagging involve two serial processes: (1) setting of the synaptic tag as triggered by a specific pattern of stimulation, and (2) synaptic capture, whereby the synaptic tag interacts with newly synthesized plasticity-related proteins (PRPs). Much of the understanding about the concepts of STC and cross-tagging arises from the studies done in CA1 region of the hippocampus and because of the technical complexity many of the laboratories are still unable to study these processes. Experimental conditions for the preparation of hippocampal slices and the recording of stable late-LTP/LTD are extremely important to study synaptic tagging/cross-tagging. This video article describes the experimental procedures to study long-term plasticity processes such as STC and cross-tagging in the CA1 pyramidal neurons using stable, long-term field-potential recordings from acute hippocampal slices of rats. 相似文献
16.
Inositol Phospholipid Metabolism During and Following Synaptic Activation: Role of Adenosine 总被引:1,自引:2,他引:1
The metabolic pathway of inositol phospholipids represents a series of synthetic and hydrolytic reactions with inositol as a by-product. Hence, the rate of [3H]inositol release from prelabeled phospholipids can be used as a reflection of activity of this pathway. In the frog sympathetic ganglion prelabeled with [3H]inositol, we studied the effect of synaptic activity (orthodromic stimulation) on release of 3H-label into the medium. This release was interpreted as [3H]inositol release. The value was low at rest and increased significantly by 32% during orthodromic stimulation (20 Hz for 5 min). However, on cessation of the stimulation, [3H]inositol release increased rapidly by 148% and remained elevated for at least 45 min. This increase in [3H]inositol release during and after the stimulation period was reduced by suffusion of the ganglia with adenosine. We hypothesized that synaptic activation releases a long-lasting stimulatory agonist and a short-lasting inhibitory (adenosine) agonist or agonists affecting [3H]inositol release. To demonstrate the presence of a stimulatory agonist, two sympathetic ganglia were used. One was prelabeled with [3H]inositol, and the other was not. The two ganglia were placed together in a 5-microliter droplet of Ringer's solution containing atropine. Orthodromic stimuli applied to the nonlabeled ganglion elicited release of [3H]inositol from the nonstimulated ganglion. To test whether the adenosine formed during orthodromic stimulation inhibits [3H]inositol release, we destroyed endogenous adenosine by suffusion of the ganglia with adenosine deaminase during the stimulation period. We found that adenosine deaminase induced large increases in [3H]inositol release during the stimulation period, in contrast to an increase seen only during the poststimulation period when adenosine deaminase was omitted. Because [3H]inositol release is assumed to parallel changes in content of inositol phosphates, we anticipated no changes of the levels of these compounds during orthodromic stimulation. However, measurements showed that levels of inositol phosphates and inositol phospholipids were all elevated except for phosphatidylinositol 4-phosphate. On termination of the stimulus, they remained elevated, with a further increase in levels of inositol trisphosphate and phosphatidylinositol 4-phosphate. We conclude that endogenous adenosine inhibits [3H]inositol release, possibly by modulating several of the steps of the inositol phospholipid pathway.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
17.
18.
《Anthrozo?s》2013,26(3):222-235
AbstractStimuli and events that animals have to learn about in both their natural environments and in modern environments, such as our homes and farms, are often “multisensory,” i.e., they usually occur in more than one sensory modality. There are studies in humans and animals showing that stimuli that are multisensory are learned more quickly than stimuli presented in just a single sensory modality. My aim is to highlight how animals can combine information from several sensory modalities simultaneously, and show how using multisensory stimuli in training can enhance an animal's ability to learn new behaviors. 相似文献
19.
Drug addiction, characterized by high rates of relapse, is recognized as a kind of neuroadaptive disorder. Since the extracellular
signal-regulated kinase (ERK) pathway is critical to neuroplasticity in the adult brain, understanding the role this pathway
plays is important for understanding the molecular mechanism underlying drug addiction and relapse. Here, we review previous
literatures that focus on the effects of exposure to cocaine, amphetamine, Δ9-tetrahydrocannabinol (THC), nicotine, morphine, and alcohol on ERK signaling in the mesocorticolimbic dopamine system; these
alterations of ERK signaling have been thought to contribute to the drug’s rewarding effects and to the long-term maladaptation
induced by drug abuse. We then discuss the possible upstreams of the ERK signaling pathway activated by exposure of drugs
of abuse and the environmental cues previously paired with drugs. Finally, we argue that since ERK activation is a key molecular
process in reinstatement of conditioned place preference and drug self-administration, the pharmacological manipulation of
the ERK pathway is a potential treatment strategy for drug addiction.
Haifeng Zhai and Yanqin Li contributed equally to this paper. 相似文献
20.
Pablo Montoya Betty Benrey Juan F. Barrera Mauricio Zenil Lia Ruiz Pablo Liedo 《Biocontrol Science and Technology》2003,13(7):683-690
We studied conspecific host discrimination and oviposition behavior of Diaschasmimorpha longicaudata (Ashmead), in third instar Anastrepha ludens (Loew) under laboratory conditions. The complete process of oviposition in D. longicaudata required an average of 29±11.7 s (Mean±SE), during which time the female remained completely immobile. This contrasts with attempts to oviposit for lesser durations (2-4 s), during which the female constantly moved her antennae and abdomen. In order to determine the host discrimination ability of this species (i.e., the capacity to distinguish between parasitized and non-parasitized hosts), third-instar A. ludens non-parasitized or parasitized 24 h earlier, were exposed simultaneously to individual female wasps with or without previous oviposition experience. An identical test was performed using larvae parasitized 48 h earlier. Both types of females showed a similar behavioral pattern of oviposition, but with significant differences in the number of eggs laid in parasitized and non-parasitized larvae. Experienced females showed reduced incidence of oviposition in parasitized larvae as well as a greater number of probes that did not lead to parasitism (rejection), although this difference was only significant in the 24-h test. This suggests that the host discrimination capacity of this parasitoid is innate and that previous oviposition experience increases the discrimination ability of females. 相似文献