首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Monoclonal antibodies raised to pancreatic glucagon were tested for their ability to detect glucagon-containing endocrine cells in material processed for light and electron microscopy. Samples from man, baboon and rat were used in this investigation. Two antibodies were specific for the pancreatic islet A cells, the remainder detected both pancreatic and enteric endocrine cells.In man and baboon the glucagon-containing cells were confined to the pancreas, lower small intestine and colon. In the rat the distribution was extended to include the corpus of the stomach and the jejunum. The cells identified in the ileum and colon were of three morphological types endocrine, paracrine (type 1) with a single basal process and paracrine (type 2) with multiple small cytoplasmic processes.These antibodies also detected cells in material fixed by conventional methods for electron microscopy. The ultrastructural appearance of the baboon pancreatic glucagon-containing ultracellular secretory granules were demonstrated to be clearly distinct from those described previously in man and rat. The secretory granules averaged 330±23 nm and lacked the characteristic clear outer halo seen in the other two species.  相似文献   

2.
Summary Using a monoclonal antibody (LK2H10) directed against human chromogranin, we have been able to localize this soluble glycoprotein to the matrix of secretory granules from a wide variety of endocrine cells. In the gut, enterochromaffin, enteroglucagon, glucose-dependent insulinotropic peptide, gastrin, and neurotensin-containing cells exhibit chromogranin immunoreactivity. In our system, chromogranin-immunoreactive material was restricted to the halo of human pancreatic glucagon-containing secretory granules within A-cells. Chromogranin immunoreactivity was also localized to secretory granules in phaeochromocytomas, gastrinomas, medullary carcinomas of the thyroid and a carotid body tumour (chemodectoma). Chromogranin is proposed as a potential marker for the ultrastructural recognition of endocrine cell secretory granules.  相似文献   

3.
Calsyntenins are members of the cadherin superfamily of cell adhesion molecules. They are present in postsynaptic membranes of excitatory neurons and in vesicles in transit to neuronal growth cones. In the current study, calsyntenin-1 (CST-1) and calsyntenin-3 (CST-3) were identified by mass spectrometric analysis (LC-MS/MS) of integral membrane proteins from highly enriched secretory granule preparations from bovine anterior pituitary gland. Immunofluorescence microscopy on thin frozen sections of rat pituitary revealed that CST-1 was present only in gonadotropes where it colocalized with follicle-stimulating hormone in secretory granules. In contrast, CST-3 was present not only in gonadotrope secretory granules but also in those of somatotropes and thyrotropes. Neither protein was detected in mammatropes. In addition, CST-1 was also localized to the glucagon-containing secretory granules of alpha cells in the pancreatic islets of Langerhans. Results indicate that calsyntenins function outside the nervous system and potentially are modulators of endocrine function.  相似文献   

4.
An immunocytochemical technique using specific antiglucagon serum reveals the presence of glucagon-containing cells situated exclusively in the oxyntic glandular mucosa of the dog stomach. Electron microscope examination of the mucosa demonstrated endocrine cells containing secretory granules with a round dense core surrounded by a clear halo, indistinguishable from secretory granules of pancreatic A cells. Like the alpha granules of pancreatic A cells, the granules of these gastric endocrine cells exhibited a peripheral distribution of silver grains after Grimelius silver staining. Moreover, the granules of these cells were found to be specifically labeled with reaction product, using the peroxidase immunocytochemical technique at the ultrastructural level. Accordingly, these cells were named gastric A cells. These data suggest that the gastric oxyntic mucosa contains cells indistinguishable cytologically, cytochemically, and immunocytochemically from pancreatic A cells. It is believed that gastric A cells are responsible for the secretion of the gastric glucagon.  相似文献   

5.
Three types of secretory cells -- B, A and D were found in the pancreatic islets of the frog, turtle, crucian, rat and cat by the method of electron microscopy. The fine structure of secretory granules is a basis for identification of the endocrine cell types. The structure of the insuline granules is changed more markedly in the evolution process while the granules of A and D cells have a similar structure in the vertebrates under study.  相似文献   

6.
Four major pancreatic hormones were immunolocalized at the light and electron microscopic levels in the pancreas of the Nile crocodile, Crocodilus niloticus. Immunogold was used for electron microscopy, and peroxidase-antiperoxidase was used for light microscopy. Somatostatin-positive D-cells and pancreatic polypeptide-containing F-cells accounted for about 60% of the immunoreactive cells in the ventral pancreas. Glucagon-positive A-cells were the least frequent cell type in the ventral pancreas, about 15%, but were the predominant cell type, about 40%, in the pancreas that was dorsal in character. An expanded population of D-cells (relative to mammals and other higher vertebrates) in association with two very different numbers of A-cells can be expected to have important consequences for the homotropic control of secretory activity of the endocrine pancreas as well as for the function of the acinar pancreas. F-cells were absent from the dorsal part of the pancreas, whereas insulin-containing B-cells were slightly more abundant in this portion of the pancreas. The regional character of the endocrine pancreas was related to the complex looping of the proximal small intestine. Without immunolabeling, only B-granules were morphognomonic in electron micrographs. The insulin-reactive B-granules were the smallest (370 nm) of the secretory granules and were followed in size by somatostatin-positive D-granules (380 nm). The pancreatic polypeptide-containing secretory granules were the largest (580 nm). Glucagon-reactive A-granules (430 nm) sometimes exhibited a protuberance or extension of secretory granule matrix and limiting membrane. Such a morphological feature has previously been associated with secretion of glucagon and the initiation of insulin secretion. Taken together these studies indicate that protuberances have a significant, but as yet undefined, role in pancreatic endocrine cells.  相似文献   

7.
Ghrelin is a new gastric peptide involved in food intake control and growth hormone release. We aimed to assess its cell localisation in man during adult and fetal life and to clarify present interspecies inconsistencies of gastric endocrine cell types. A specific serum generated against amino acids 13-28 of ghrelin was tested on fetal and adult gastric mucosa and compared with ghrelin in situ hybridisation. Immunogold electron microscopy was performed on normal human, rat and dog adult stomach. Ghrelin cells were detected in developing gut, pancreas and lung from gestational week 10 and in adult human, rat and dog gastric mucosa. By immunogold electron microscopy, gastric ghrelin cells showed distinctive morphology and hormone reactivity in respect to histamine enterochromaffin-like, somatostatin D, glucagon A or serotonin enterochromaffin cells. Ghrelin cells were characterised by round, compact, electron-dense secretory granules of P/D(1) type in man (mean diameter 147+/-30 nm), A-like type in the rat (183+/-37 nm) and X type in the dog (273+/-49 nm). It is concluded that, ghrelin is produced by well-defined cell types, which in the past had been labelled differently in various mammals mostly because of the different size of their secretory granule. In man ghrelin cells develop during early fetal life.  相似文献   

8.
Summary The endocrine pancreas of the Australian fattailed dunnart, Sminthopsis crassicaudata, was investigated by means of electron-microscopic immunocytochemistry using the protein A-gold technique on London resin (LR) white-embedded tissue. The primary antibodies used were raised against insulin, glucagon, somatostatin and pancreatic polypeptide. The morphology of the secretory granules differed in the four cell types. The insulin cells are pleomorphic, and the secretory granules composed of an electron-dense core surrounded by an electron-lucen halo. The glucago cells possess granules with an electron-dense core usually surrounded by a halo of less dense granular material. Somatostatin cells have large, less dense secretory granules. The pancreatic polypeptide cells show small, dense secretory granules. In order for an ultrastructural study to be considered reliable for the definite identification of endocrine cell types, it is essential that it be corroborated by immunocytochemical data at the light-or preferably electron-microscopic level. Recent developments in immuno-electron-microscopic techniques have contributed to a better knowledge of cells responsible for the secretion of a wide variety of hormones, as in this study.  相似文献   

9.
Summary Four monoclonal antibodies specific for somatostatin have been produced and characterized. These antibodies were used to assess the anatomical relationship of somatostatin-containing cells in the pancreas and gastrointestinal tract of man, baboon and rat with ten other peptide-containing endocrine cells. The peptides investigated were gastrin, cholecystokinin, motilin, secretin, neurotensin, gastric inhibitory polypeptide, gut-glucagon, pancreatic glucagon, pancreatic polypeptide and insulin.The only regions in which somatostatin cells were seen in close contact with another endocrine cell were in the pancreas and the gastric antrum. In the pancreas somatostatin cells were commonly seen in close contact with insulin, glucagon and pancreatic polypeptide cells and infrequent contact was demonstrable with the gastrin-immunoreactive cells in the antrum of both rat and man. In all other cases no evidence was obtained for a close anatomical relationship between somatostatin cells and the other enteroendocrine cells.  相似文献   

10.
We examined by immunocytochemistry the localization of cathepsin B in endocrine cells of rat anterior pituitary lobe, using a monospecific antibody to cathepsin B. By light microscopy, granular immunodeposits for cathepsin B were detected in most endocrine cells of anterior pituitary lobe. Cells immunoreactive for luteinizing hormone (LH) were diffusely immunostained by anti-cathepsin B. By electron microscopy, immunogold particles for cathepsin B were localized in lysosomes of thyrotrophs, somatotrophs, and mammotrophs. In mammotrophs, immunogold particles for cathepsin B were also detected in crinophagic bodies. Double immunostaining co-localized immunogold particles for LH and cathepsin B in secretory granules of gonadotrophs. Immunocytochemistry was also applied to demonstrate localization of renin and prorenin in LH-producing gonadotrophs; immunogold particles for renin were co-localized with those for LH, cathepsin B, or prorenin in their secretory granules. Immunogold particles for prorenin were also co-localized with those for LH or cathepsin B in secretory granules, but prorenin-positive granules appeared less frequently than renin-positive granules. These results suggest that cathepsin B not only plays a role in the protein degradation in lysosomes of anterior pituitary endocrine cells but also participates in the activation of renin in gonadotrophs, as has been demonstrated in secretory granules of juxtaglomerular cells.  相似文献   

11.
Four monoclonal antibodies specific for somatostatin have been produced and characterized. These antibodies were used to assess the anatomical relationship of somatostatin-containing cells in the pancreas and gastrointestinal tract of man, baboon and rat with ten other peptide-containing endocrine cells. The peptides investigated were gastrin, cholecystokinin, motilin, secretin, neurotensin, gastric inhibitory polypeptide, gut-glucagon, pancreatic glucagon, pancreatic polypeptide and insulin. The only regions in which somatostatin cells were seen in close contact with another endocrine cell were in the pancreas and the gastric antrum. In the pancreas somatostatin cells were commonly seen in close contact with insulin, glucagon and pancreatic polypeptide cells and infrequent contact was demonstrable with the gastrin-immunoreactive cells in the antrum of both rat and man. In all other cases no evidence was obtained for a close anatomical relationship between somatostatin cells and the other enteroendocrine cells.  相似文献   

12.
The mechanism of secretory granule formation and exocytosis in the endocrine cells of normal and transplanted rat pancreas was studied using electron microscopy. On the one hand, formation of secretory granules starts with the dilatation of the 2 ends or the vesicularization of the middle parts of rough endoplasmatic reticulum (RER). On the other hand, prohormone ribosomes condense into the vesicles of the GOLGI apparatus. This probably indicates that the GOLGI complex is not the only source of formation of secretory granules. Exocytosis occurs with the formation of an electron dense streak between the perigranular membrane and the apical cell membrane. This is followed by the rupture of the streak at this midpoint allowing the granule to extrude into the space between the cell membrane and the parenchymal basal membrane. This fusion-rupture-extrusion mechanism repeats itself at the parenchymal and capillary basal membranes and also at the endothelium until it gets into the capillary lumen, showing that hormones of pancreatic endocrine cells may be actively transported into circulation as intact secretory granules. There is no significant morphological difference between the mechanism of secretory granule formation in normal and transplanted pancreatic tissue.  相似文献   

13.
In this study, we investigated the presence of ovoid or ellipsoidal amylin-immunoreactive cells of the pancreatic islets of the black-spotted frog Rana (Pelophylax) nigromaculata. Using double immunofluorescent staining, all amylin-immunoreactive cells were shown to be immuno-negative for insulin, glucagon, and somatostatin, and they were often observed in peripheral regions of clusters of insulin-immunoreactive cells. Under immunoelectron microscopy, amylin-immunoreactive signals were detected on the secretory granules in a specific type of endocrine cells. From our results, we conclude that the amylin-immunoreactive cells correspond to X cells among the 4 distinct types of endocrine cells (B, A/PP, D, and X) previously identified in the frog. Amylin secreted from X cells may regulate the hormone secretion from A/PP cells and/or B cells through a paracrine mechanism.  相似文献   

14.
Summary The endocrine pancreas of the grey kangaroo,Macropus fuliginosus, was investigated by means of immunocytochemistry using the PAP method on the same section at the light- and electron-microscopic levels. Semithin plastic sections were stained individually with primary antibodies for insulin, glucagon, somatostatin and pancreatic polypeptide (PP), and then photographed. Sections were osmicated, re-embedded in BEEM capsules, and ultrathin sections made and examined. The same labelled cells as in the semithin sections were localised in the thin sections, photographs taken and the morphology of secretory granules studied. The insulin cells were pleomorphic; their secretory granules displayed an electron-dense core surrounded by an empty halo. The glucagon cells possessed granules with an electron-dense core usually surrounded by a halo of less dense granular material. Somatostatin cells had larger, less dense secretory granules. The PP cells showed small, dense secretory granules. In order for an ultrastructural study to be considered reliable for the definite identification of endocrine cell types, it is essential that it be corroborted by correlated immunocytochemical data at the light-and electron-microscopic levels.  相似文献   

15.
Summary Correlative immunocytochemical and electron microscopic studies, using the semi thin-thin technic, were performed to identify the (entero) glucagon, somatostatin and pancreatic polypeptide-like immunoreactive cells of the human colonic mucosa. Mean granule diameter for each cell type was estimated according to two methods and histograms showing the granule size distribution were constructed. A total of 139 immunostained cells identified at the ultrastructural level were analyzed. Mean granule diameter for (entero)glucagon-containing cells was 318±11 nm but a reduction of granule size with age was noteworthy: granules were larger in the fetus (mean diameter 350±15) than in adults (mean diameter 310±10 nm). Somatostatin-containing cells, very rare in adults, were present in the fetal distal colon. Their general mean granule diameter was 354±18 nm but many cells had a mean granule diameter of more than 400 nm. A pancreatic polypeptidelike immunoreactivity was found only in (entero)glucagon-containing cells, pointing out the possible occurrence of both peptides (or of similar sequences) in the same cells. Previous ultrastructural studies dealing with a tentative classification of the human colonic endocrine cells were compared with the present data.This work was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM).  相似文献   

16.
Ultrastructure of islet ghrelin cells in the human fetus   总被引:6,自引:0,他引:6  
Ghrelin is a peptide hormone predominantly produced in the stomach. Ghrelin expression has also been reported in other tissues including the pancreas. We have reported that ghrelin cells constitute a novel endocrine cell type in the human and the developing rat islets. The cells are most numerous pre- and neonatally and, in humans, constitute 10% of all islet cells from mid-gestation to birth. Since gastric ghrelin expression is low before birth, the islets may be the main source of circulating ghrelin during this time. In the present investigation, we have performed an ultrastructural analysis of pancreatic ghrelin cells in human fetuses by using transmission electron microscopy and immunogold labelling. In addition, morphometrical analysis of secretory granules size was performed. Our data provide evidence for the unique ultrastructural features of ghrelin cells versus other islet cells. Notably, the secretory granules of ghrelin cells were of small size with a mean dense-core diameter of 110 nm. We conclude that ghrelin cells constitute a novel islet cell type, distinct from the previously hormonally characterised islet cell types.This work was supported by grants from the Swedish Medical Research Council (Project No. 4499), the Royal Physiographic Society and the Novo Nordic, Påhlsson and Gyllenstiernska Krapperup Foundations  相似文献   

17.
Summary The pancreatic endocrine tissue of Fugu rubripes rubripes consists of numerous round principal islets (Brockmann bodies) of various sizes scattered around the gall-bladder. The endocrine cells are divided into A-, B-, D-, and Ff-cells. Each cell type was identified by comparing thick and thin sections in both light and electron microscopy. Aldehyde-fuchsin positive B-cells contain numerous round secretory granules (average diameter 300 nm) each of which has a round compact core of moderate density; a narrow space exists between this core and the limiting membrane. Grimelius' silver positive A cells contain round secretory granules (average diameter 360 nm) with a hexagonal or tetragonal crystalline core (average diameter 170 nm) of high density; the silver grains preferentially appear in the space between the limiting membrane and the core. The crystalline core of each -granule often contains an appendix-like structure of variable shape. D cells blackened by the silver impregnation method of Hellman and Hellerström (1960) have round secretory granules (average diameter 320 nm) filled with a flocculent material of low density. The fourth cell type (Ff-cell) has a clear cytoplasm after differential staining for light microscopy. By electron microscopy, this cell has elongated fusiform secretory granules (520 nm average length × 230 nm average width) filled with numerous filaments arranged in parallel with the longitudinal axis. Figures suggesting granule formation in the sacs of the Golgi apparatus were obtained in all of islet cell types. Equivalents of emiocytotic release of secretory granules were encountered in the A and Ff cells.  相似文献   

18.
Chromogranin A (CgA) is transported restrictedly to secretory granules in neuroendocrine cells. In addition to pH- and Ca(2+)-dependent aggregation, CgA is known to bind to a number of vesicle matrix proteins. Because the binding-prone property of CgA with secretory proteins may be essential for its targeting to secretory granules, we screened its binding partner proteins using a yeast two-hybrid system. We found that CgA bound to secretogranin III (SgIII) by specific interaction both in vitro and in endocrine cells. Localization analysis showed that CgA and SgIII were coexpressed in pituitary and pancreatic endocrine cell lines, whereas SgIII was not expressed in the adrenal glands and PC12 cells. Immunoelectron microscopy demonstrated that CgA and SgIII were specifically colocalized in large secretory granules in male rat gonadotropes, which possess large-type and small-type granules. An immunocytochemical analysis revealed that deletion of the binding domain (CgA 48-111) for SgIII missorted CgA to the constitutive pathway, whereas deletion of the binding domain (SgIII 214-373) for CgA did not affect the sorting of SgIII to the secretory granules in AtT-20 cells. These findings suggest that CgA localizes with SgIII by specific binding in secretory granules in SgIII-expressing pituitary and pancreatic endocrine cells, whereas other mechanisms are likely to be responsible for CgA localization in secretory granules of SgIII-lacking adrenal chromaffin cells and PC12 cells.  相似文献   

19.
Summary Synaptophysin, a major membrane glycoprotein of small presynaptic vesicles in neurons, has also been found in microvesicles of endocrine cells, e.g., of the endocrine pancreas. In the present study, the endocrine pancreas in 9 mammalian species (man, dog, mink, bovine, rabbit, guinea pig, rat, mouse, gerbil) has been investigated immunohistochemically for synaptophysin immunoreactivity. Synaptophysin-positive cells have been identified and localized on semithin plastic sections. Our study demonstrates that, in all species examined, all pancreatic endocrine cell types are consistently synaptophysin-positive independent of their location within the tissue, or the conditions of tissue processing. In addition, a few cells that cannot be hormonally identified show synaptophysin immunoreactivity. Hence, synaptophysin appears to be a regular constituent of all pancreatic endocrine cells in mammals. In several species, a subpopulation of endocrine cells, consisting of glucagon-containing and/or pancreatic-polypeptide-containing cells, exhibits a significantly higher degree of synaptophysin immunoreactivity. In the gerbil, this heterogeneity can readily be detected from the day of birth onwards. Our findings indicate that closely related endocrine cell types may differ with respect to the content of synaptophysin.  相似文献   

20.
Correlative immunocytochemical and electron microscopic studies, using the semi thin-thin technic, were performed to identify the (entero) glucagon, somatostatin and pancreatic polypeptide-like immunoreactive cells of the human colonic mucosa. Mean granule diameter for each cell type was estimated according to two methods and histograms showing the granule size distribution were constructed. A total of 139 immunostained cells identified at the ultrastructural level were analyzed. Mean granule diameter for (entero)glucagon-containing cells was 318 +/- 11 nm but a reduction of granule size with age was noteworthy: granules were larger in the fetus (mean diameter 350 +/- 15) than in adults (mean diameter 310 +/- 10 nm). Somatostatin-containing cells, very rare in adults, were present in the fetal distal colon. Their general mean granule diameter was 354 +/- 18 nm but many cells had a mean granule diameter of more than 400 nm. A pancreatic polypeptide-like immunoreactivity was found only in (entero)glucagon-containing cells, pointing out the possible occurrence of both peptides (or of similar sequences) in the same cells. Previous ultrastructural studies dealing with a tentative classification of the human colonic endocrine cells were compared with the present data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号