首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca(II) ions are crucial during proteolytic conversion of Factor XIII zymogen into the active enzyme Factor XIIIa. Factor XIII proteolyzed by thrombin or trypsin in the presence of 5 mM-EDTA resulted in rapid inactivation of transglutaminase activity. Factor XIIIa formed by thrombin or trypsin in the presence of 40 microM-Tb(III) ions, however, was indistinguishable from Factor XIIIa formed in the presence of 2-5 mM-Ca(II) ions with respect to molecular mass and transglutaminase activity. Thrombin treatment of Factor XIII in the presence of 1-5 microM-Tb(III) ions resulted in three fragments (76 kDa, 51 kDa and 19 kDa) with simultaneous loss of transglutaminase activity. Tb(III) ions at concentrations greater than 40 microM made platelet Factor XIII resistant to proteolysis by either thrombin or trypsin. Other lanthanide(III) ions [Ln(III) ions] tested [Ce(III), La(III) and Gd(III) ions] functioned similarly to Tb(III) ions during proteolytic activation of Factor XIII. Ln(III) ions (10-100 microM) were unable to replace the Ca(II) ions required for transglutaminase activity of Factor XIIIa. Tb(III) ions also inhibited in a non-competitive manner the transglutaminase activity of Factor XIIIa (Ki 71 microM) even when measured in the presence of 200-fold molar excess of Ca(II) ions. Factor XIII selectively bound to a Tb(III)-chelate affinity column, and could not be eluted by 100 mM-CaCl2. Binding of Tb(III) ions to Factor XIII was demonstrated by fluorescence emission due to Forster energy transfer. A 10(4)-fold molar excess of CaCl2, but not NaCl, partially quenched Tb(III) fluorescence. Low concentrations (5-20 microM) of Tb(III) ions also inhibited the binding of Factor XIII to des-A-fibrinogen by about 43%, whereas higher concentrations (40-100 microM) promoted binding. Conformational changes in Factor XIII consequent to the binding of Tb(III) ions could be responsible for the observed effects on protein structure and function.  相似文献   

2.
Human tyrosine 3-monooxygenase (tyrosine hydroxylase) exists as four different isozymes (TH1-TH4), generated by alternative splicing of pre-mRNA. Recombinant TH1, TH2 and TH4 were expressed in high yield in Escherichia coli. The purified isozymes revealed high catalytic activity [when reconstituted with Fe(II)] and stability at neutral pH. The isozymes as isolated contained 0.04-0.1 atom iron and 0.02-0.06 atom zinc/enzyme subunit. All three isozymes were rapidly activated (13-40-fold) by incubation with Fe(II) salts (concentration of iron at half-maximal activation = 6-14 microM), and were inhibited by other divalent metal ions, e.g. Zn(II), Co(II) and Ni(II). They all bind stoichiometric amounts of Fe(II) and Zn(II) with high affinity (Kd = 0.2-3 microM at pH 5.4-6.5). Similar time courses were observed for binding of Fe(II) and enzyme activation. In the absence of any free Fe(II) or Zn(II), the metal ions were released from the reconstituted isozymes. The dissociation was favoured by acidic pH, as well as by the presence of metal chelators and dithiothreitol. The potency of metal chelators to remove iron from the hydroxylase correlated with their ability to inhibit the enzyme activity. These studies show that tyrosine hydroxylase binds iron reversibly and that its catalytic activity is strictly dependent on the presence of this metal.  相似文献   

3.
Redox-active metal ions such as Fe(II)\(III) and Cu(I)\(II) have been proposed to activate reactive oxygen and nitrogen species (RONS) and thus, perpetuate oxidative damage. Here, we show that concentrations of metal ions and EDTA complexes with superoxide-destroying activities equivalent to 1 U SOD are Fe(III) 5.1 microM, Mn(II) 0.77 microM, Cu(II)-EDTA 3.55 microM, Fe(III)-EDTA 2.34 microM, and Mn(II)-EDTA 1.38 microM. The most active being the aquated Cu(II) species which exhibited superoxide-destroying activity equivalent to 2U of SOD at 0.29 microM. Hydrogen peroxide-destroying activities were as follows Fe(III)-EDTA ca. 70 U/mg and aquated Fe(III) 141 U/mg. In contrast, DTPA prevented superoxide-destroying activity and significantly depleted hydrogen peroxide-destroying activity. In conclusion, non-protein bound transition metal ions may have significant anti-oxidant effects in biological systems. Caution should be employed in bioassays when chelating metal ions. Our results demonstrate that DTPA is preferential to EDTA for inactivating redox-active metal ions in bioassays.  相似文献   

4.
The carotenoid lycopene has been associated with decreased risks of several types of cancer, such as hepatoma. Although lycopene has been shown to inhibit metastasis, its mechanism of action is poorly understood. Here, we used SK-Hep-1 cells (from a human hepatoma) to test whether lycopene exerts its anti-invasion activity via down-regulation of the expression of matrix metalloproteinase (MMP)-9, an important enzyme in the degradation of basement membrane in cancer invasion. The activity and expressions of MMP-9 protein and mRNA were detected by gelatin zymography, Western blotting and RT-PCR, respectively. The binding abilities of nuclear factor-kappa B (NF-kappaB), activator protein-1 and stimulatory protein-1 (Sp1) to the binding sites in the MMP-9 promoter were measured by the electrophoretic mobility shift assay. We showed that lycopene (1-10 microM) significantly inhibited SK-Hep-1 invasion (P<.05) and that this effect correlated with the inhibition of MMP-9 at the levels of enzyme activity (r(2)=.94, P<.001), protein expression (r(2)=.80, P=.007) and mRNA expression (r(2)=.94, P<.001). Lycopene also significantly inhibited the binding abilities of NF-kappaB and Sp1 and decreased, to some extent, the expression of insulin-like growth factor-1 receptor (IGF-1R) and the intracellular level of reactive oxygen species (P<.05). The antioxidant effect of lycopene appeared to play a minor role in its inhibition of MMP-9 and invasion activity of SK-Hep-1 cells because coincubation of cells with lycopene plus hydrogen peroxide abolished the antioxidant effect but did not significantly affect the anti-invasion ability of lycopene. Thus, lycopene decreases the invasive ability of SK-Hep-1 cells by inhibiting MMP-9 expression and suppressing the binding activity of NF-kappaB and Sp1. These effects of lycopene may be related to the down-regulation of IGF-1R, while the antioxidant activity of lycopene appears to play a minor role.  相似文献   

5.
Thioredoxin (Trx) inhibited tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 activity with an approximate IC50 of 0.3 microM, matrix metalloproteinase (MMP)-2 activity with an approximate IC50 of 2 microM but did not inhibit MMP-9 activity. This differential capacity of Trx to inhibit TIMP and MMP activity resulted in the promotion of MMP-2 and MMP-9 activity in the presence of molar TIMP excess. Inhibition of TIMP and MMP-2 activity by Trx was dependent upon thioredoxin reductase (TrxR), was abolished by Trx catalytic site mutation and did not result from TIMP or MMP-2 degradation. HepG2 hepatocellular carcinoma cells induced to secrete Trx inhibited TIMP activity in the presence of TrxR. SK-N-SH neuroblastoma cells secreted TrxR, which inhibited TIMP and MMP-2 activity in the presence of Trx. Trx stimulated SK-N-SH invasive capacity in vitro in the absence of exogenous TrxR. This study therefore identifies a novel extracellular role for the thioredoxin/thioredoxin reductase redox system in the differential inhibition of TIMP and MMP activity and provides a novel mechanism for altering the TIMP/MMP balance that is of potential relevance to tumor invasion.  相似文献   

6.
Malate synthase (EC 4.1.3.2), the key enzyme of the glyoxylate cycle, was purified to a homogeneous protein from the wood-rotting basidiomycete Fomitopsis palustris grown on glucose. The purified enzyme, with a molecular mass of 520 kDa, was found to consist of eight 65-kDa subunits, and to have Km of 45 and 2.2 microM for glyoxylate and acetyl-CoA, respectively. The enzyme activity was competitively inhibited by oxalate (K1, 8.5 microM) and glycolate (Ki, 17 microM), and uncompetitively by coenzyme A (Ki, 100 microM). The potent inhibition of the activity by p-chloromercuribenzoate suggests that the enzyme has a sulfhydryl group at the active center. However, the enzyme was inhibited moderately by adenine nucleotides and weakly by some of the metabolic intermediates of glycolysis and tricarboxylic acid cycle. The enzyme was completely inactive in the absence of metal ions and was maximally activated by Mg2+ (Km, 0.4 microM), which also served to significantly prevent enzyme inactivation during storage.  相似文献   

7.
Tannic acid (TA), a plant polyphenol, has been described as having antimutagenic, anticarcinogenic and antioxidant activities. Since it is a potent chelator of iron ions, we decided to examine if the antioxidant activity of TA is related to its ability to chelate iron ions. The degradation of 2-deoxyribose induced by 6 microM Fe(II) plus 100 microM H2O2 was inhibited by TA, with an I50 value of 13 microM. Tannic acid was over three orders of magnitude more efficient in protecting against 2-deoxyribose degradation than classical *OH scavengers. The antioxidant potency of TA was inversely proportional to Fe(II) concentration, demonstrating a competition between H2O2 and AT for reaction with Fe(II). On the other hand, the efficiency of TA was nearly unchanged with increasing concentrations of the *OH detector molecule, 2-deoxyribose. These results indicate that the antioxidant activity of TA is mainly due to iron chelation rather than *OH scavenging. TA also inhibited 2-deoxyribose degradation mediated by Fe(III)-EDTA (iron = 50 microM) plus ascorbate. The protective action of TA was significantly higher with 50 microM EDTA than with 500 microM EDTA, suggesting that TA removes Fe(III) from EDTA and forms a complex with iron that cannot induce *OH formation. We also provided evidence that TA forms a stable complex with Fe(II), since excess ferrozine (14 mM) recovered 95-96% of the Fe(II) from 10 microM TA even after a 30-min exposure to 100-500 microM H2O2. Addition of Fe(III) to samples containing TA caused the formation of Fe(II)n-TA, complexes, as determined by ferrozine assays, indicating that TA is also capable of reducing Fe(III) ions. We propose that when Fe(II) is complexed to TA, it is unable to participate in Fenton reactions and mediate *OH formation. The antimutagenic and anticarcinogenic activity of TA, described elsewhere, may be explained (at least in part) by its capacity to prevent Fenton reactions.  相似文献   

8.
The purpose of this study was to compare each of the 14 naturally occurring lanthanoid metal ions for ability to stimulate pro-fibrotic responses in human dermal fibroblasts. When fibroblasts were exposed to individual lanthanoids over the concentration range of 1-100?μM, increased proliferation was observed with each of the agents as compared with control cells that were already proliferating rapidly in a growth factor-enriched culture medium. Dose-response differences were observed among the individual metal ions. Matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinase-1 levels were also increased in response to lanthanoid exposure but type I procollagen production was not. A dose-response relationship between induction of proliferation and increased MMP-1 was observed. Non-lanthanoid transition metal ions (aluminum, copper, cobalt, iron, magnesium, manganese, nickel, and zinc) were examined in the same assays; there was little stimulation with any of these metals. When epidermal keratinocytes were examined in place of dermal fibroblasts, there was no growth stimulation with any of the lanthanoids. Several of the lanthanoid metals inhibited keratinocyte proliferation at higher concentrations (50-100?μM).  相似文献   

9.
Tissue factor pathway inhibitor-2 (TFPI-2) is a Kunitz-type serine proteinase inhibitor associated with the extracellular matrices of vascular cells. A recent report provided in vitro evidence that TFPI-2 may be a novel inhibitor of the matrix metalloproteinases MMP-1, MMP-13, MMP-2 and MMP-9. In studies aimed at identifying the structural elements of TFPI-2 mediating the putative inhibition of the above MMPs, we re-examined the ability of native TFPI-2 to form complexes with MMP-2, MMP-9 and MMP-1, as well as assess its ability to inhibit the proteolytic activity of the interstitial collagenase, activated MMP-1. We report here that TFPI-2 failed to form complexes with MMP-2, MMP-9 and MMP-1 as revealed in immunoprecipitation and ligand blotting studies. In addition, TFPI-2 had no influence on the proteolytic activity of activated MMP-1 towards triple-helical collagen. These data provide presumptive evidence that TFPI-2 does not bind to MMP-2, MMP-9 and MMP-1, or regulate MMP-1, in the extracellular matrix.  相似文献   

10.
The effects of serotonin (5-hydroxytryptamine; 5-HT) on in vitro transformed primary sporocysts of Schistosoma mansoni were investigated. Serotonin treatment significantly increased parasite motility (percentage of motile sporocysts) and length at concentrations as low as 1 microM. These effects were mimicked by the 5-HT agonist tryptamine, albeit with 10- to 100-fold less potency. The effects of 10 microM 5-HT on sporocyst motility were observed within 15 min posttreatment and on parasite length by 6 h posttreatment, and both effects were stable for up to 48 h. Receptor antagonists with varying affinities for defined vertebrate neurotransmitter receptor subtypes were examined for their effects on parasite behavior in the absence and presence of 10 microM 5-HT. In the absence of 5-HT, only methiothepin significantly inhibited normal parasite growth after 48 h of incubation. In the presence of 10 microM 5-HT, the serotonin receptor antagonists mianserin, ketanserin (both at 100 microM), and methiothepin (at 10 microM) significantly inhibited 5-HT-induced lengthening of primary sporocysts, while 3-tropanyl-indole-3-carboxylate and chlorpromazine had no significant effect. The effects of these same drugs on parasite motility were also examined. In the absence of 5-HT, 10 microM chlorpromazine increased parasite motility, while the other antagonists had no effect. When sporocysts were treated with 10 microM 5-HT for 2 h in the continued presence of antagonist, 100 microM mianserin, ketanserin, 3-tropanyl-indole-3-carboxylate, and 10 microM methiothepin inhibited 5-HT induced increases in parasite motility, while 10 microM chlorpromazine had no effect. These results show that primary sporocysts of S. mansoni exhibit behavioral responses to serotonin much like adult stages of this parasite. Furthermore, these responses appear to be mediated via receptors with pharmacological similarities to those previously described in adult worms.  相似文献   

11.
A number of tightly regulated proteolytic enzyme systems, including the plasminogen activation cascade and matrix metalloproteases, play integral roles in the remodelling of extracellular matrices during pregnancy and parturition. This study assessed these labour-associated changes in protease activity in human gestational tissues. Amnion, choriodecidua and placenta collected from women before (at caesarean section, not in labour), during (at caesarean section, in labour) and after (spontaneous-onset labour, normal vaginal delivery) labour were examined on gelatin-substrate SDS-PAGE zymography. All tissues displayed major 55 kDa plasminogen-dependent activity that was abolished by the serine protease inhibitors (10 mmol phenylmethyl-sulphonylfluoride l-1, 100 mmol epsilon aminocaproic acid l-1, 1 mmol Glu-Gly-Arg chloromethylketone l-1). The enzymic activity was identified as urokinase plasminogen activator on the basis of its co-migration with reference standard and western blot analysis, and did not vary with labour status. An additional protease with an apparent molecular mass of approximately 90 kDa was detected in all tissues. Densitometric measurement of these tissues showed a significant (P < 0.05) increase in this enzyme activity with labour onset. Heavy metal chelators (1 mmol 1.10 phenanthroline l-1 and 10 mmol EDTA l-1) selectively blocked the 90 kDa activity, consistent with the proposal that it is a metalloprotease. Co-migration with reference standard and western blot analysis confirmed the identity of this protease as the matrix metalloprotease 9 (MMP-9). Immunoreactive MMP-9 protein was also significantly (P < 0.05) increased during and after labour compared with before labour in all tissues examined. It is proposed that the upregulated expression of MMP-9 is involved in fetal membrane rupture and placental separation during and after labour onset, respectively. In conclusion, the regulated repertoire of protease activities expressed by human gestational tissues implies an important role for matrix-degrading enzymes during human parturition.  相似文献   

12.
1. Manganese(II) buffers were set up with inorganic triphosphate, trimethylenediaminetetraacetate and tetramethylenediaminetetraacetate to study the Mn dependence of beta 1,4-galactosyltransferase (lactose synthetase) in preparations of rat mammary gland. 2. In intact particulate preparations, treated with the calcium ionophore A23187, lactose synthesis was abolished by chelators and restored by bivalent transition metal ions in a manner characteristic of activation site I of the pure enzyme. Ni(II) also activated, as did Mg at high concentration. 3. Only Mn(II) could restore endogenous rates, giving an apparent Km of 0.1-0.2 microM, and eliciting about 70% full activity without addition of a site II activator. 4. In purified Golgi membrane vesicles, Mn gave an apparent Km of 0.4 microM. This increased sharply to about 10 microM on permeabilization with filipin, lysis with detergents, solubilization with Triton X-100, or in the pure enzyme. Preparations of chemically undamaged Golgi vesicles, known to include a proportion of the enzyme on exposed membranes, exhibited both low-Km and high-Km components. 5. The response of particulate galactosyltransferase to apparently physiological concentrations of free Mn(II) ion is interpreted as either due to a sensitizing factor within the Golgi lumen, or to the accumulation of Mn at elevated concentrations. Alternatively, the high Km of the soluble enzyme may reflect proteolytic damage.  相似文献   

13.
Triggering the ceramide pathway by exogenous treatment with neutral sphingomyelinase (Smase) inhibited human keratinocyte growth rate, while having no influence on cell apoptosis. Increasing the ceramide content of keratinocytes with Smase (100 U/ml) or C6-ceramide (1 microM) enhanced matrix metalloproteinase (MMP)-9 production. On the contrary, levels of MMP-2 secretion were unchanged. The inhibition of keratinocyte growth rate induced by ceramide could be annihilated by a peptide hydroxamate MMP inhibitor or an MMP-9 blocking antibody. In addition, inhibiting MMP-9 activity in control keratinocyte culture was found to stimulate keratinocyte proliferation. These data suggest a pivotal function of MMP-9 in the control of keratinocyte growth.  相似文献   

14.
Octopamine Uptake and Metabolism in the Insect Nervous System   总被引:5,自引:0,他引:5  
Several insect tissues were examined for their ability to take up octopamine in the presence and absence of sodium ions. The cockroach Malpighian tubules, ovary, and ventral nerve cord showed the highest level of sodium-dependent uptake. The adult firefly lantern exhibited substantial sodium-independent uptake. Some of these tissues were also examined for their ability to metabolize octopamine by N-acetylation. Measurable N-acetyltransferase activity was present in the cockroach ventral nerve cord, tobacco hornworm CNS, and firefly light organ. N-Acetylation is proposed to be the major metabolic pathway for octopamine in the cockroach (Periplaneta americana) nervous system. Several classes of compounds, including octopamine receptor agonists, tricyclic antidepressants, amphetamines, chloroethylbenzylamines, and some experimental insecticides, were tested for their ability to inhibit octopamine uptake and metabolism. The sodium-insensitive component of uptake was not inhibited by most compounds tested, but the sodium-sensitive component was strongly inhibited by xylamine, N-ethyl-N-chloroethyl-o-bromobenzylamine, and their aziridinium ions (60-100%). These compounds also effectively inhibited N-acetyl-transferase (IC50 values at or below 1 microM). Other good inhibitors of N-acetyltransferase included desipramine, synephrine, and an experimental insecticide, CGA 132427. Formamidine pesticides had limited effect on both processes, and neither action seems likely to be involved in their octopaminergic actions in vivo. Cocaine was unique in stimulating N-acetyltransferase activity. When inhibition of sodium-sensitive uptake is compared with inhibition of N-acetyltransferase in the cockroach ventral nerve cord, two groups of inhibitors are discernible. Type 1 compounds inhibit uptake without an effect on N-acetyltransferase, whereas type 2 compounds inhibit both processes. These results suggest a functional linkage between the uptake and acetylation of octopamine.  相似文献   

15.
Two closely related Cl(-)-activated arginyl aminopeptidases (I and II) were purified from a soluble extract of postmortem human cerebral cortex by anion-exchange chromatography and preparative gel electrophoresis. The electrophoretic mobility of II was approximately 80% that of I; the molecular mass of both enzymes was approximately 70 kilodaltons (kDa) (gel filtration). The aminopeptidase action of I and II on aminoacyl-7-amido-4-methylcoumarin (AMC) substrates was restricted to the Arg and Lys derivatives. Both enzymes had significant endopeptidase activity, hydrolysing several biologically active peptides including neurotensin, bradykinin, angiotensin-I, substance P, luliberin, and somatostatin at internal bonds. Other peptides [Leu-enkephalin, proctolin, thyroliberin, adrenocorticotropin18-39 (ACTH18-39), ACTH11-24, and dynorphin (1-13)] were not appreciably hydrolysed. The amino- and endopeptidase activities had pH optima at 6.5 and 7, respectively, and were both inhibited by metal ion chelators and sulphydryl group blocking agents. The aminopeptidase activity was stimulated 20-fold by Cl- ions, whereas the endopeptidase activity was unaffected by the latter. Km values for neurotensin degradation were 20 microM (I) and 37 microM (II) and for Arg-AMC hydrolysis they were 167 microM (I) and 125 microM (II). The endopeptidase activity was not inhibited by the aminopeptidase inhibitors arphamenine or bestatin (IC50 = 9 nM and 0.1 microM, respectively, with Arg-AMC substrate).  相似文献   

16.
Pyridine-2,6-dithiocarboxylic acid (pdtc) is a metal chelator produced by Pseudomonas spp. It has been shown to be involved in the biodegradation of carbon tetrachloride; however, little is known about its biological function. In this study, we examined the antimicrobial properties of pdtc and the mechanism of its antibiotic activity. The growth of Pseudomonas stutzeri strain KC, a pdtc-producing strain, was significantly enhanced by 32 microM pdtc. All nonpseudomonads and two strains of P. stutzeri were sensitive to 16 to 32 microM pdtc. In general, fluorescent pseudomonads were resistant to all concentrations tested. In competition experiments, strain KC demonstrated antagonism toward Escherichia coli. This effect was partially alleviated by 100 microM FeCl3. Less antagonism was observed in mutant derivatives of strain KC (CTN1 and KC657) which lack the ability to produce pdtc. A competitive advantage was restored to strain CTN1 by cosmid pT31, which restores pdtc production. pT31 also enhanced the pdtc resistance of all pdtc-sensitive strains, indicating that this plasmid contains elements responsible for resistance to pdtc. The antimicrobial effect of pdtc was reduced by the addition of Fe(III), Co(III), and Cu(II) and enhanced by Zn(II). Analyses by mass spectrometry determined that Cu(I):pdtc and Co(III):pdtc2 form immediately under our experimental conditions. Our results suggest that pdtc is an antagonist and that metal sequestration is the primary mechanism of its antimicrobial activity. It is also possible that Zn(II), if present, may play a role in pdtc toxicity.  相似文献   

17.
Activated protein C (APC) exerts its physiologic anticoagulant role by proteolytic inactivation of the blood coagulation cofactors Va and VIIIa. The synthetic peptide-(311-325) (KRNRTFVLNFIKIPV), derived from the heavy chain sequence of APC, potently inhibited APC anticoagulant activity in activated partial thromboplastin time (APTT) and Xa-1-stage coagulation assays in normal and in protein S-depleted plasma with 50% inhibition at 13 microM peptide. In a system using purified clotting factors, peptide-(311-325) inhibited APC-catalyzed inactivation of factor Va in the presence or absence of phospholipids with 50% inhibition at 6 microM peptide. However, peptide-(311-325) had no effect on APC amidolytic activity or on the reaction of APC with the serpin, recombinant [Arg358]alpha 1-antitrypsin. Peptide-(311-325) surprisingly inhibited factor Xa clotting activity in normal plasma, and in a purified system it inhibited prothrombinase activity in the presence but not in the absence of factor Va with 50% inhibition at 8 microM peptide. The peptide had no significant effect on factor Xa or thrombin amidolytic activity and no effect on the clotting of purified fibrinogen by thrombin, suggesting it does not directly inhibit these enzymes. Factor Va bound in a dose-dependent manner to immobilized peptide-(311-325). Peptide-(311-315) inhibited the binding of factor Va to immobilized APC or factor Xa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The enzyme adenylosuccinate (sAMP) synthetase has been partially purified from Dictyostelium discoideum using hadacidin-Sepharose 4B affinity chromatography, anion-exchange high-performance liquid chromatography (HPLC), and gel-filtration HPLC, resulting in a 2600-fold purification. Using a newly developed HPLC procedure to assay activity, it has been found that D. discoideum adenylosuccinate synthetase activity has apparent Km values for the substrates IMP, GTP, and aspartate of 36, 23, and 714 microM, respectively. The analog guanosine-5'-(beta, gamma-imino)triphosphate was found to be an inhibitor of GTP with a Ki of 15 microM, and IMP was competitively inhibited by its analog formycin B monophosphate with a Ki of 80 microM. An analysis of these kinetic data showed a pattern consistent with a fully random terter mechanism. Hadacidin, an analog of aspartate, was an inhibitor of that substrate at 86 microM. Other analogs of hadacidin were synthesized and examined for their effect on the sAMP synthetase activity. Compared to hadacidin, which produced 100% inhibition at 5 mM, it was observed that N-acetyl-N-hydroxyglycine, N-formylglycine, N-acetylglycine, and N-hydroxyglycine all inhibited between 50 and 75%, with N-(thiocarboxy)-L-aspartic anhydride less effective at 27%, and N-benzoylglycine at only 6%. N-Formylsarcosine, N-acetylmethionine, O-methylpyruvate oxime, and hadacidin methylester had no effect at this concentration. The adenylosuccinate synthetase activity was dependent on metal ions with maximum activity being obtained with Mg2+. The ability of the aspartate analog hadacidin to bind to the purified adenylosuccinate synthetase was demonstrated using anion-exchange HPLC and [formyl-14C]hadacidin. The radioactivity coeluted with the adenylosuccinate synthetase and the bound, radiolabeled hadacidin was displaced by excess aspartate.  相似文献   

19.
Inhibitory effects of flavonoid phytochemicals, flavones, flavonols and isoflavones on cortisol production were examined in human adrenal H295R cells stimulated with di-buthylyl cAMP. In addition, the inhibitory effects of these chemicals on the activity of P450scc, 3beta-HSD type II (3beta-HSD II), P450c17, P450c21 and P45011beta, steroidogenic enzymes involved in cortisol biosynthesis, were examined in the same cells. Exposure to 12.5 microM of the flavonoids 6-hydroxyflavone, 4'-hydroxyflavone, apigenin, daidzein, genistein and formononetin significantly decreased cortisol production (by 6.3, 69.6, 47.5, 26.6, 13.8 and 11.3%, respectively), and biochanin A significantly decreased cortisol production (by 47.3%) at a concentration of 25 microM without any significant cytotoxic effects or changes in cell number. Daidzin, the 7-glucoside of daidzein, did not alter cortisol production by H295R cells at concentrations over 10 microg/ml (24 microM). Daidzein-induced reduction of cortisol production by H295R cells was not inhibited by the estrogen receptor antagonist ICI 182,780. The flavonoids 6-hydroxyflavone, daidzein, genistein, biochanin A and formononetin strongly and significantly inhibited microsomal 3beta-HSD II activity at concentrations from 1 to 25 microM, and I(50) values were estimated to be 1.3, 2, 1, 0.5 and 2.7 microM, respectively. In addition, these flavonoids significantly inhibited microsomal P450c21 activity at 12.5 and/or 25 microM. In addition, 6-hydroxyflavone inhibited activity of microsomal P450c17 and mitochondrial P45011beta at 12.5 and/or 25 microM. Results of Lineweaver-Burk's plot analysis indicate that daidzein is a competitive inhibitor of the activity of 3beta-HSD II and P450c21. K(m) and V(max) values of 3beta-HSD II for DHEA were estimated to be 6.6 microM and 328pmol/minmg protein, respectively. K(m) and V(max) values of P450c21 for progesterone were estimated to be 2.8 microM and 16pmol/minmg protein, respectively. K(i) values of 3beta-HSD II and P450c21 for daidzein were estimated to be 2.9 and 33.3 microM, respectively.  相似文献   

20.
Song HY  Ju SM  Goh AR  Kwon DJ  Choi SY  Park J 《BMB reports》2011,44(7):462-467
Up-regulation of selected matrix metalloproteinases (MMPs) such as MMP-9 contributes to inflammatory processes during the development of various skin diseases, such as atopic dermatitis. In this study, we examined the effect of a cell-permeable superoxide dismutase (Tat-SOD) on TNF-α-induced MMP-9 expression in human keratinocyte cells (HaCaT). When Tat-SOD was added to the culture medium of HaCaT cells, it rapidly entered the cells in dose- and time-dependent manners. Tat-SOD decreased TNF-α-induced reactive oxygen species (ROS) generation. Tat-SOD also inhibited TNF-α-induced NF-κB DNA binding activity. Treatment of HaCaT cells with Tat-SOD significantly inhibited TNF-α-induced mRNA and protein expression of MMP-9, as measured by RT-PCR and Western blot analysis. In addition, Tat-SOD suppressed TNF-α-induced gelatinolytic activity of MMP-9. Taken together, our results indicate that Tat-SOD can suppress TNF-α-induced MMP-9 expression via ROS-NF-κB-dependent mechanisms in keratinocytes, and therefore can be used as an immunomodulatory agent against inflammatory skin diseases related to oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号