首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Myristoylated alanine-rich C kinase substrate (MARCKS) is a widely distributed specific protein kinase C (PKC) substrate and has been implicated in membrane trafficking, cell motility, secretion, cell cycle, and transformation. We found that amyloid beta protein (A beta) (25-35) and A beta (1-40) phosphorylate MARCKS in primary cultured rat microglia. Treatment of microglia with A beta (25-35) at 10 nM or 12-O-tetradecanoylphorbol 13-acetate (1.6 nM) led to phosphorylation of MARCKS, an event inhibited by PKC inhibitors, staurosporine, calphostin C, and chelerythrine. The A beta (25-35)-induced phosphorylation of MARCKS was inhibited by pretreatment with the tyrosine kinase inhibitors genistein and herbimycin A, but not with pertussis toxin. PKC isoforms alpha, delta, and epsilon were identified in microglia by immunocytochemistry and western blots using isoform-specific antibodies. PKC-delta was tyrosine-phosphorylated by the treatment of microglia for 10 min with A beta (25-35) at 10 nM. Other PKC isoforms alpha and epsilon were tyrosine-phosphorylated by A beta (25-35), but only to a small extent. We propose that a tyrosine kinase-activated PKC pathway is involved in the A beta (25-35)-induced phosphorylation of MARCKS in rat microglia.  相似文献   

2.
Abstract: We studied the regulation of cyclic AMP responses by protein kinase C (PKC) in purified astrocyte and microglia cultures obtained from the neonatal rat brain. In astrocytes, a 10-min treatment with the phorbol esters phorbol 12-myristate 13-acetate (PMA) and 4β-phorbol 12,13-didecanoate (4β-PDD) (but not with 4α-PDD) or with diacylglycerol, which activate PKC, dose-dependently enhanced cyclic AMP accumulation induced by the β-adrenergic agonist isoproterenol and the adenylyl cyclase activator forskolin. Such enhancement was prevented by the PKC inhibitors staurosporine and calphostin-C and by down-regulation of PKC and was not related to activation of membrane receptors or Gs proteins or to inhibition of Gi proteins or phosphodiesterases. Instead, the activity of adenylyl cyclase doubled in PMA-treated astrocytes. In microglia, a 10-min treatment with PMA or PKC inhibitors did not affect cyclic AMP accumulation, whereas longer treatments with PMA or 4β-PDD (but not 4α-PDD) inhibited the cyclic AMP response in a time- and dose-dependent manner. Such inhibition was mimicked by staurosporine and calphostin-C. Also, in the case of microglia, the modulation of cyclic AMP responses appeared to occur at the level of adenylyl cyclase, and not elsewhere in the cyclic AMP cascade. The inhibition of microglial adenylyl cyclase was apparently not due to aspecific cytotoxicity. A differential regulation of adenylyl cyclase by PKC in astrocytes and microglia may help to explain qualitative and quantitative differences in the response of these cells to various physiological and pathological stimuli.  相似文献   

3.
Stimulation of platelets with thrombin leads to rapid degradation of inositol phospholipids, generation of diacylglycerol (DAG) and subsequent activation of protein kinase C (PKC). Previous studies indicated that prior activation of PKC with phorbol myristate acetate (PMA) desensitizes platelets to thrombin stimulation, as indicated by a decreased production of inositol phosphates and decreased Ca2+ mobilization. This suggests that PKC activation generates negative-feedback signals, which limit the phosphoinositide response. To test this hypothesis further, we examined the effects of PKC activators and inhibitors on thrombin-stimulated DAG mass formation in platelets. Pretreatment with PMA abolishes thrombin-stimulated DAG formation (50% inhibition at 60 nM). Pretreatment of platelets with the PKC inhibitors K252a or staurosporine potentiates DAG production in response to thrombin (3-4-fold) when using concentrations required to inhibit platelet PKC (1-10 microM). K252a does not inhibit phosphorylation of endogenous DAG or phosphorylation of a cell-permeant DAG in unstimulated platelets, indicating that DAG over-production is not due to inhibition of DAG kinase. Sphingosine, a PKC inhibitor with a different mechanism of action, also potentiates DAG formation in response to thrombin. Several lines of evidence indicate that DAG formation under the conditions employed occurs predominantly by phosphoinositide (and not phosphatidylcholine) hydrolysis: (1) PMA alone does not elicit DAG formation, but inhibits agonist-stimulated DAG formation; (2) thrombin-stimulated DAG formation is inhibited by neomycin (1-10 mM) but not by the phosphatidate phosphohydrolase inhibitor propranolol; and (3) no metabolism of radiolabelled phosphatidylcholine was observed upon stimulation by thrombin or PMA. These data provide strong support for a role of PKC in limiting the extent of platelet phosphoinositide hydrolysis.  相似文献   

4.
Fluid production in Locusta Malpighian tubules was stimulated by corpora cardiaca extract (c. 100%) and dibutyryl cAMP (c. 50%). Chelerythrine and staurosporine (Protein kinase C, PKC inhibitors) inhibited it in the range 0.07-60&mgr;M (IC(50)3&mgr;M), whereas Rp-cAMP (Protein kinase A, PKA inhibitor) caused inhibition over the concentration range 10-1000&mgr;M (IC(50)264&mgr;M). The protein phosphatase inhibitor, okadaic acid, was also inhibitory over the concentration range 0.1-1000nM (IC(50) 91nM). CC extract stimulation increased fluid [Na(+)] from 41 to 59mM and decreased [K(+)] from 127 to 107mM; stimulation with cAMP had no such effect. The PKC inhibitors reduced the [K(+)] in the secreted fluid from 126 to 107mM but had no effect on the [Na(+)]. Subsequent addition of CC extract stimulated fluid production and caused an increase in [Na(+)] from 41 to about 50mM. The addition of Rp-cAMP reduced fluid production but caused a decrease in [Na(+)] from 37 to 28mM and an increase in its [K(+)] from 124 to 148mM. Fluid production by Rp-cAMP inhibited tubules was not stimulated by corpora cardiaca extract or cAMP, but [Na(+)] rose to 36mM. Protein phosphorylation plays a role in the regulation of fluid production probably via the apical and basal membrane cation transporters.  相似文献   

5.
The role of protein kinase C (PKC) in the control of erythropoietin (Epo) production was studied using the human hepatoma cell line HepG2. Inhibition of PKC by staurosporine and the selective PKC inhibitor CGP 41251 significantly reduced Epo formation. No inhibition occurred with the inactive staurosporine derivative CGP 42700. Treatment with phorbol 12-myristate 13-acetate (PMA) for 24 h dose-dependently inhibited Epo formation, thus suggesting that down-regulation of PKC might be responsible for this inhibition. Immunoblotting experiments showed that incubation of HepG2 cells with PMA for 24 h resulted in a selective and almost complete down-regulation of PKC-alpha. Thus, PKC-alpha may play a permissive role in Epo synthesis in HepG2 cells.  相似文献   

6.
7.
The protein kinase C (PKC) inhibitor staurosporine was found to dramatically alter the actin microfilament cytoskeleton of a variety of cultured cells, including PTK2 epithelial cells, Swiss 3T3 fibroblasts, and human foreskin fibroblasts. For example, PTK2 cells exposed to 20 nM staurosporine exhibited a progressive thinning and loss of cytoplasmic actin microfilament bundles over a 60-min period. During this time microtubule and intermediate filament systems remained intact (as shown by immunofluorescence and at higher resolution by photoelectron microscopy), and the cells remained spread even though microfilament bundles were absent. Higher doses of staurosporine or longer exposure times at lower doses resulted in morphological alterations, but even severely arborized cells recovered normal morphology and actin patterns after a wash and an incubation for several hours in fresh medium. The actin filament disruption induced by staurosporine was distinguishable from the actin reorganization induced by exposure to the tumor promoter (and activator of PKC) phorbol myristate acetate (PMA). Swiss 3T3 cells made deficient in PKC by prolonged exposure to PMA (PKC down-regulation) exhibited actin alterations in response to staurosporine which were comparable to those in cells which had not been exposed to the phorbol ester. In a parallel control experiment, the actin cytoskeleton of PKC-deficient 3T3 cells was unaffected in response to PMA, consistent with down-regulation of this kinase. While the exact mechanism of staurosporine-induced actin reorganization remains to be determined, the observed effects of staurosporine on PKC-deficient cells make a role for PKC unlikely. These results indicate the need for care when staurosporine is employed as an inhibitor of protein kinase C in studies involving intact cells.  相似文献   

8.
To determine how protein kinase C (PKC) activity influences properties of the tetrodotoxin-resistant sodium current (TTX-R I(Na)) in neonatal rat nodose ganglion (NG) neurons, we assessed the effects of phorbol,-12-myristate,13-acetate (PMA), one of the PKC activators, and staurosporine, one of the PKC inhibitors, on the current. PMA (30 and 100 nM) induced an increase in the peak current amplitude of normalized current-voltage curves, a leftward shift in the potential for half activation (V(1/2)) of normalized conductance-voltage curves and a leftward shift of V(1/2) potential for steady-state inactivation curves. The effects of staurosporine (0.1 and 1 muM) on the peak current amplitude and the V(1/2) potential for activation were opposite compared with those seen after PMA application. Staurosporine (1 muM) antagonized PMA (100 nM)-induced modification of TTX-R I(Na). These results suggest that the basal TTX-R I(Na) obtained from neonatal NG neurons is controlled by the level of PKC activity.  相似文献   

9.
Protein kinase C (PKC) has been considered for a potential target of anticancer chemotherapy. PKC-alpha has been associated with growth and metastasis of some cancer cells. However, the role of PKC-alpha in human breast cancer cell proliferation and anticancer chemotherapy remains unclear. In this study, we examined whether alterations of PKC-alpha by phorbol esters and PKC inhibitors could affect proliferation of human breast cancer MCF-7 cells and the cytotoxic effect of chemotherapeutic agents. Exposure for 24 h to doxorubicin (DOX) and vinblastine (VIN) caused a concentration-dependent reduction in proliferation of MCF-7 cells. However, these two anticancer drugs altered cellular morphology and growth pattern in distinct manners. Phorbol 12,13-dibutyrate (PDBu, 100 nM), which enhanced activities of PKC-alpha, increased cancer cell proliferation and attenuated VIN (1 microM)-induced cytotoxicity. These effects were not affected in the presence of 10 nM staurosporine. Phorbol myristate acetate (PMA, 100 nM) that completely depleted PKC-alpha also enhanced cancer cell proliferation and attenuated VIN-induced cytotoxicity. Three potent PKC inhibitors, staurosporine (10 nM), chelerythrine (5 microM) and bisindolylmaleimide-I (100 nM), had no significant effect on MCF-7 cell proliferation; staurosporine and chelerythrine, but not bisindolylmaleimide-I, attenuated VIN-induced cytotoxicity. Moreover, neither phorbol esters nor PKC inhibitors had an effect on cytotoxic effects of DOX (1 microM) on MCF-7 cell proliferation. Thus, these data suggest that MCF-7 cell proliferation or the anti-cancer action of DOX and VIN on breast cancer cells is independent of PKC-alpha.  相似文献   

10.
11.
The effects of various protein kinase C (PKC) inhibitors on NADPH oxidase (NO) activation by the phorbol ester PMA and by the chemotactic peptide FMLP were studied. H-7 reduced the effects of both stimuli in human neutrophils (HN) and HL-60 cells by 13-63%. Polymyxin B did not inhibit NO activation by PMA and FMLP in HN and reduced the effects of both stimuli in HL-60 cells by 27-55%. Retinal and retinoic acid enhanced the effects of PMA and FMLP in HL-60 cells and of FMLP in HN up to 4.5-fold. In contrast, retinoic acid inhibited the effect of PMA in HN. In the presence of cytochalasin B, retinal inhibited the effect of FMLP in HN, whereas retinoic acid inhibited NO activation by FMLP in both cell types. The dual PKC/calmodulin inhibitors trifluoperazine and W-7 abolished NO activation by PMA and FMLP in HN and HL-60 cells. Thus, the effects of PKC inhibitors on NO activation exhibit (1) cell type specificity, (2) stimulus dependency and (3) no correlation with in vitro inhibition of PKC. Our results suggest that studies with PKC inhibitors presently available cannot clarify the role of PKC in NO activation.  相似文献   

12.
We have previously demonstrated that treatment of the human keratinocyte cell line NCTC 2544 with a UVB dose equivalent to 1h exposure (100 mJ/cm2) results in a significant increase of IL-8 production. In this study, we use specific inhibitors to investigate the role of both PKA- and PKC-mediated pathways in the regulation of UVB-induced IL-8 expression in NCTC 2544 cell line. We show here that the treatment of irradiated human keratinocytes with PKA inhibitors [H89 and PKA inhibitor (PKAi)] induced a significant decrease of IL-8 production at both mRNA and protein levels. However, the regulation of IL-8 production seems to be mediated via a cAMP-independent PKA pathway, since drugs known to enhance cAMP concentrations [PGE2, cholera toxin and dibutyryl cAMP] decrease IL-8 production in irradiated cells by down-regulating NF-kappa B activation in response to UVB radiation. Using PMA (a potent pharmacological activator of PKC) and calphostin C (a specific PKC inhibitor), we demonstrated an up-regulation of IL-8 in NCTC 2544 cells and a down-regulation of the cytokine in UVB-irradiated cells, respectively. We also observed that in our experimental conditions, staurosporine, an inhibitor of both PKC and PMA-stimulated cellular responses, does not involve PKC inhibition in irradiated cells and significantly decreased NF-kappa B activity in response to UVB radiation. Finally, we concluded that a cAMP-independent PKA activation and a PKC-associated pathway are probably involved in the regulation of UVB-induced IL-8 synthesis in human keratinocytes.  相似文献   

13.
In the present study the involvement of protein kinase C in the action of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) on osteoblast-like cells and in the stimulation of in vitro bone resorption by 1,25(OH)2D3 was examined. Incubation for 24 h with 1,25(OH)2D3 potently stimulated osteocalcin synthesis by ROS 17/2.8 cells. This stimulation was inhibited (30-70% inhibition) by 25 microM of the protein kinase C (PKC) inhibitors 1-O-hexadecyl-2-O-methyl-rac-glycerol (AMG) and sphingosine without affecting basal osteocalcin synthesis. 1,25(OH)2D3-stimulated osteocalcin secretion by nontransformed isolated fetal rat osteoblasts was also inhibited (30-55%) by AMG. Also, AMG inhibited 10(-9) M 1,25(OH)2D3-induced up-regulation of vitamin D receptor in ROS 17/2.8 cells. Activation of PKC with phorbol 12-myristate 13-acetate (PMA) did not cause an increase in osteocalcin secretion, while only a small increase in cellular content of osteocalcin in ROS 17/2.8 cells was observed. Addition of PMA together with 1,25(OH)2D3 did not change the response to 1,25(OH)2D3. The PKC inhibitors were not toxic for the cells. 1,25(OH)2D3 did not stimulate diacylglycerol production in ROS 17/2.8 cells up to 5 min after administration. However, 4- and 24-h incubation with 10 nM 1,25(OH)2D3 increased phorbol ester binding in ROS 17/2.8 cells. 1,25(OH)2D3 potently stimulated bone resorption after 3 and 6 days of culture in fetal mouse long bones and calvaria. Both the PKC inhibitors AMG (25 microM) and staurosporine (50 nM) strongly inhibited (60-86% inhibition) 1,25(OH)2D3-stimulated bone resorption without affecting basal 45Ca release. These effects were not due to a cytotoxic effect of both PKC inhibitors. Nor is it likely that the effects of AMG and staurosporine are due to inhibition of cell proliferation as hydroxyurea did not affect 1,25(OH)2D3-stimulated bone resorption. The inhibition of 1,25(OH)2D3-stimulated bone resorption by PKC inhibitors suggests that besides osteocalcin synthesis PKC is also involved in other responses of 1,25(OH)2D3 in bone. 1,25(OH)2D3 does not directly activate PKC via an increase in diacylglycerol production but more likely via an increase in PKC. Together, the present study demonstrates a functional involvement of PKC in the action of 1,25(OH)2D3 in bone and bone cells which may have consequences for the development of 1,25(OH)2D3 analogs, e.g. with less hypercalcemic and relatively more antiproliferative activity.  相似文献   

14.
We have measured the activity of the n type K+ channel present in human (Jurkat) T lymphocytes using the patch clamp technique in the whole-cell configuration. We report that protein kinase A (PKA) and protein kinase C (PKC) modulate, in a dual manner, the K+ conductance in these cells. Activation of PKA decreases the amplitude of the current, as previously reported (Bastin, B., Payet, M. D., and Dupuis, G. (1990) Cell. Immunol. 128, 385-399), and this is also the case for 12-O-tetradecanoylphorbol-13-acetate-dependent activation of PKC. In contrast, inhibitors of PKC (H7, staurosporine, polymixin B, and anti-PKC antibody) increase the current amplitude. Of importance, down-regulation of PKC or its inhibition prevented the PKA-dependent inhibition of the K+ channels. Addition of alkaline phosphatase via the patch pipette increased the K+ conductance under basal conditions and reversed the inhibition produced by PKA. The dual modulation of K+ channels in Jurkat T cells is in agreement with the presence of consensus sequences in the primary structure of the n type K+ channel.  相似文献   

15.
Tumor necrosis factor (TNF) is a 17-kDa protein produced by endotoxin-stimulated macrophages. We have demonstrated that recombinant human TNF activates human macrophages to kill intracellular bacteria of the Mycobacterium avium complex (MAC) in a dose-related manner. TNF also primed macrophages to produce superoxide anion (O2-) following treatment with phorbol esther PMA (0.1 micrograms/ml). To investigate the intracellular pathway involved in the TNF-mediated activation of mycobacteriostatic/mycobactericidal activity in macrophages, we used two different protein kinase C (PKC) inhibitors: H7 (10(-5)-10(7) M) and staurosporine (10(-7)-10(-9) M). Mellitin (1 and 100 mM) was used as a calmodulin inhibitor. Human peripheral blood-derived macrophages cultured for 7 days were treated with H7, mellitin, or staurosporine for 1 hr prior to incubation with TNF (10(3) U/ml). Twenty-four hours after treatment with TNF the O2- release was measured spectrophotometrically following exposure to PMA. Macrophages were infected with MAC and the viable intracellular bacilli were quantitated following 4 days of treatment with TNF. All PKC inhibitors suppressed O2- production after incubation with PMA. However, treatment with either PKC or calmodulin inhibitors did not influence the intracellular killing of M. avium by TNF-stimulated macrophages. Exposure of the macrophages to cGMP inhibitor but not to cAMP inhibitor significantly impaired the response to the stimulation with TNF. In contrast, incubation of macrophages with protein kinase A (PKA) had no effect on TNF-mediated mycobacteriostatic/mycobactericidal activity. These results suggest that the TNF-mediated mycobactericidal activity in cultured macrophages probably occurs by a PKC-independent mechanism.  相似文献   

16.
In the present study, we investigated the involvement of protein kinase C (PKC) in antigen (Ag, DNP-Ascaris suum)-induced phospholipase D (PLD) activation of rat peritoneal mast cells. Phorbor myristate acetate (PMA) as well as Ag activated PLD as inferred by phosphatidylethanol (PEt) production. PKC inhibitors, staurosporine and H-7, however, failed to suppress PMA-stimulated PLD activation, suggesting that PLD activation by PMA is independent of PKC. By contrast, Ag-stimulated PLD activity was significantly reduced by staurosporine and slightly by H-7. Surprisingly, the inhibitors inhibited Ag-stimulated phospholipase C (PLC), correlated to the inhibition of PLD. These observations lead us to conclude that in Ag-stimulated mast cells 1,2-diacylglycerol (DG) formed by PLC directly or indirectly stimulates PLD, independently of PKC.  相似文献   

17.
Receptor-mediated elevations of intracellular Ca2+ in endothelial cells may be controlled by a negative feedback mechanism through activation of protein kinase C (PKC). To test this hypothesis, we studied the effects of an activation or inhibition of PKC on the release of nitric oxide (NO) and prostacyclin (PGI2) from cultured bovine and porcine aortic endothelial cells (EC). Preincubation with the PKC activators phorbol-12-myristate-13-acetate (PMA) (3-300 nM) or 1-oleyl-2-acetyl-glycerol (OAG) (30 μM) significantly attenuated the release of NO and PGI2 from EC stimulated with bradykinin (0.3–30 nM), whereas phorbol-12, 13-didecanoate (PDD) (30–300 nM), which does not activate PKC, had no effect. UCN-01 (10 nM), a specific PKC inhibitor, significantly augmented the bradykinin-stimulated release of NO from EC. These effects were correlated with a reduced (PMA) or enhanced (UCN-01) elevation of intracellular Ca2+ in response to bradykinin in both types of EC. Neither the PKC activators nor the inhibitor had any effect on resting intracellular Ca2+ or basal endothelial autacoid release. Several isoforms of PKC (namely PKCα, PKCδ, PKC?, and PKCζ) were detected in bovine, human, and porcine EC by immunoblotting analysis with isotype-specific anti-PKC antibodies, which, except PKC?, were predominantly located in the cytosol. Incubation of bovine EC with PMA elicited a significant increase in membrane-bound PKCα immunoreactivity, whereas there was no translocation of PKCα from the cytosolic to the membrane fraction with bradykinin. As determined by histone phosphorylation, PKC activity was similarly reduced in the cytosol, but increased in the membrane fraction of bovine EC exposed to PMA, whereas bradykinin had no significant effect. These findings indicate that endothelial autacoid release can be modulated by activators and inhibitors of PKC. However, stimulation of EC with bradykinin does not lead to a detectable activation of PKC, suggesting that PKC does not exert a negative feedback in the signal transduction pathway of this receptor-dependent agonist. © 1993 Wiley-Liss, Inc.  相似文献   

18.
In this study, we showed that human monocytes produced TNF-alpha in response to zymosan, a particulate agonist. Protein kinase C (PKC) seems to play a regulatory role in zymosan-induced TNF-alpha secretion. The pretreatment of monocytes with PMA induced a dose-dependent inhibition of zymosan-stimulated TNF production. This inhibition was likely due to an activation of PKC because it was prevented by inhibitors of PKC, sphingosine, and staurosporine. Moreover, PMA elicited a profound down-modulation of zymosan binding to monocytes. The inhibition of zymosan binding and TNF production displayed similar dose-dependence, suggesting that both events were closely related. In addition, PMA did not modify the expression of CD11b/CD18 receptor that is involved in zymosan recognition. In view of these findings, qualitative changes of CD11b/CD18 molecules might account for the inhibition of zymosan binding and TNF production. Thus, PMA specifically increased the association of CD11b/CD18 with the detergent-insoluble cytoskeleton. Cytochalasin B but not microtubule disrupters, nocodazole and colchicine, partially prevented the inhibition of zymosan binding. Hence, the inhibitory action of PMA on zymosan binding seems to be mediated by an increase in attachment of zymosan receptor to cytoskeleton and more likely to microfilaments. The regulatory activity of PKC might represent a first way of limiting cytokine over-production in response to pathogens which interact with monocytes via CD11/CD18 molecules.  相似文献   

19.
Ding SZ  Cho CH  Lam SK 《Cytokine》2000,12(7):1129-1135
Interleukin (IL-) 6 is closely related to gastrointestinal diseases. The question of whether gastric epithelial cell contributes to IL-6 production remains undefined. We aim to evaluate the regulatory pathway of IL-6 expression in gastric epithelial cells, by using different inflammatory cytokines, endotoxin, or protein kinase modulators. IL-6 was measured by ELISA. Phorbol-12-myristate-13-acetate (PMA), calcium ionophore A23187, TNF-alpha, IL-1beta, oncostatin M (OSM) but not lipopolysaccharide stimulated IL-6 production from gastric epithelial cell line MKN-28. Blocking protein tyrosine kinase (PTK) activation by herbimycin A or genistein, or blocking NF-kappaB activation by pyrrolidinedithiocarbamate, reduced the IL-6 expression induced by TNF-alpha, IL-1beta and OSM. Dexamethasone mimicked this effect. Protein kinase (PK) C inhibitor only reduced the PMA and OSM induced IL-6 production. Both inhibitors and activators for PKA and G-protein as well as IL-10 had no effects on IL-6 expression. These results indicate that inflammatory cytokines are crucial for IL-6 regulation in gastric epithelial cells. The IL-6 signal pathway is mediated through PTK, NF-kappaB, and also involve PKC, intracellular calcium and sensitive to dexamethasone, but is not related to PKA, G-protein and IL-10.  相似文献   

20.
Dopamine cellular signaling via the D(1) receptor (D(1)R) involves both protein kinase A (PKA) and protein kinase C (PKC), but the PKC isoform involved has not been determined. Therefore, we tested the hypothesis that the D(1)R-mediated inhibition of NADPH oxidase activity involves cross talk between PKA and a specific PKC isoform(s). In HEK-293 cells heterologously expressing human D(1)R (HEK-hD(1)), fenoldopam, a D(1)R agonist, and phorbol 12-myristate 13-acetate (PMA), a PKC activator, inhibited oxidase activity in a time- and concentration-dependent manner. The D(1)R-mediated inhibition of oxidase activity (68.1±3.6%) was attenuated by two PKA inhibitors, H89 (10μmol/L; 88±8.1%) and Rp-cAMP (10μmol/L; 97.7±6.7%), and two PKC inhibitors, bisindolylmaleimide I (1μmol/L; 94±6%) and staurosporine (10nmol/L; 93±8%), which by themselves had no effect (n=4-8/group). The inhibitory effect of PMA (1μmol/L) on oxidase activity (73±3.2%) was blocked by H89 (100±7.8%; n=5 or 6/group). The PMA-mediated inhibition of NADPH oxidase activity was accompanied by an increase in PKCθ(S676), an effect that was also blocked by H89. Fenoldopam (1μmol/L) also increased PKCθ(S676) in HEK-hD(1) and human renal proximal tubule (RPT) cells. Knockdown of PKCθ with siRNA in RPT cells prevented the inhibitory effect of fenoldopam on NADPH oxidase activity. Our studies demonstrate for the first time that cross talk between PKA and PKCθ plays an important role in the D(1)R-mediated negative regulation of NADPH oxidase activity in human kidney cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号