首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Chlamydia trachomatis is a human pathogen and Chlamydia muridarum is a mouse pathogen but paradoxically, they share near genomic synteny. The majority of strain-variable genes are located primarily in a hyper-variable region termed the plasticity zone. Tryptophan synthase and cytotoxin are plasticity zone genes unique to the human and murine strains, respectively. Tryptophan synthase is a virulence factor that differentiates C. trachomatis strains into genital and ocular disease pathotypes, whereas cytotoxin(s) is a virulence factor linked to murine infection tropism. Divergence in these loci is strongly correlated with host-specific interferon gamma effector activities, suggesting that these virulence genes have co-evolved with their respective hosts as a primary mechanism to evade innate immunity. These findings have important implications for chlamydial animal modeling studies.  相似文献   

2.
3.
Murine γ-herpesvirus 68 (MHV-68) infection of Mus musculus-derived strains of mice is an attractive model of γ-herpesvirus infection. Surprisingly, however, ablation of expression of MHV-68 M3, a secreted protein with broad chemokine-binding properties in vitro, has no discernable effect during experimental infection via the respiratory tract. Here we demonstrate that M3 indeed contributes significantly to MHV-68 infection, but only in the context of a natural host, the wood mouse (Apodemus sylvaticus). Specifically, M3 was essential for two features unique to the wood mouse: virus-dependent inducible bronchus-associated lymphoid tissue (iBALT) in the lung and highly organized secondary follicles in the spleen, both predominant sites of latency in these organs. Consequently, lack of M3 resulted in substantially reduced latency in the spleen and lung. In the absence of M3, splenic germinal centers appeared as previously described for MHV-68-infected laboratory strains of mice, further evidence that M3 is not fully functional in the established model host. Finally, analyses of M3's influence on chemokine and cytokine levels within the lungs of infected wood mice were consistent with the known chemokine-binding profile of M3, and revealed additional influences that provide further insight into its role in MHV-68 biology.  相似文献   

4.
A role for alpha/beta interferon (IFN-alpha/beta) in the IFN-gamma antiviral response has long been suggested. Accordingly, possible roles for autocrine or double-stranded-RNA (dsRNA)-induced IFN-alpha/beta in the IFN-gamma response were investigated. Use was made of wild-type and a variety of mutant human fibrosarcoma cell lines, including mutant U5A cells, which lack a functional IFN-alpha/beta receptor and hence an IFN-alpha/beta response. IFN-gamma did not induce detectable levels of IFN-alpha/beta in any of the cell lines, nor was the IFN-gamma response per se dependent on autocrine IFN-alpha/beta. On the other hand, a number of responses to dsRNA [poly(I). poly(C)] and encephalomyocarditis virus were greatly enhanced by IFN-gamma pretreatment (priming) of wild-type cells or of mutant cells lacking an IFN-alpha/beta response; these include the primary induction of dsRNA-inducible mRNAs, including IFN-beta mRNA, and, to a lesser extent, the dsRNA-mediated activation of the p38 mitogen-activated protein (MAP) kinase(s). IFN-gamma priming of mRNA induction by dsRNA is dependent on JAK1 and shows biphasic kinetics, with an initial rapid (<30-min) response being followed by a more substantial effect on overnight incubation. The IFN-gamma-primed dsRNA responses appear to be subject to modulation through the p38, phosphatidylinositol 3-kinase, and ERK1/ERK2 MAP kinase pathways. It can be concluded that despite efficient priming of IFN-beta production, the IFN-alpha/beta pathways play no significant role in the primary IFN-gamma antiviral response in these cell-virus systems. The observed IFN-gamma priming of dsRNA responses, on the other hand, will likely play a significant role in combating virus infection in vivo.  相似文献   

5.
Glasgow, Lowell A. (University of Rochester School of Medicine and Dentistry, Rochester, N.Y.). Leukocytes and interferon in the host response to viral infections. II. Enhanced interferon response of leukocytes from immune animals. J. Bacteriol. 91:2185-2191. 1966.-The production of interferon was studied under in vitro conditions in peritoneal leukocytes or macrophages from mice immunized with Chikungunya virus (CV). Cultures of leukocytes obtained from animals immune to CV produced 2- to 10-fold greater amounts of interferon when exposed to an inoculum of CV than similar cell preparations from nonimmune, control animals. The viral inhibitor produced in increased quantity by CV-immune leukocytes had the biological and biochemical properties of interferon. The enhanced interferon production was inhibited by actinomycin D. This response of immune leukocytes was specific, and was initiated only by CV; it was not observed in leukocytes from animals immunized against other viruses which were challenged with CV. The presence of neutralizing antibody could not be related to this response. The observed increase in interferon production was not dependent upon an enhanced virus uptake. The data are presented as a possible new dimension of the "immune response" and may suggest a mechanism for the phenomenon of "tissue immunity."  相似文献   

6.
Six patients with the acquired immune deficiency syndrome (AIDS) had exacerbations or recurrences of previously quiescent atopic disease when they developed immunodeficiency. Four developed a different atopic illness from that suffered previously. Atopic symptoms developed within three months after the patients developed AIDS or during prodromal illness. Two of the patients were treated with recombinant interferon gamma: both showed a striking improvement in symptoms and cellular immunity. These results indicate that cellular immunity, through interferon gamma, may have a role in regulating atopic disease.  相似文献   

7.
Kaposi's sarcoma-associated herpesvirus (KSHV) and the closely related gamma-2 herpesvirus rhesus macaque (RM) rhadinovirus (RRV) are the only known viruses to encode viral homologues of the cellular interferon (IFN) regulatory factors (IRFs). Recent characterization of a viral IRF (vIRF) deletion clone of RRV (vIRF-knockout RRV [vIRF-ko RRV]) demonstrated that vIRFs inhibit induction of type I and type II IFNs during RRV infection of peripheral blood mononuclear cells. Because the IFN response is a key component to a host's antiviral defenses, this study has investigated the role of vIRFs in viral replication and the development of the immune response during in vivo infection in RMs, the natural host of RRV. Experimental infection of RMs with vIRF-ko RRV resulted in decreased viral loads and diminished B cell hyperplasia, a characteristic pathology during acute RRV infection that often develops into more severe lymphoproliferative disorders in immune-compromised animals, similar to pathologies in KSHV-infected individuals. Moreover, in vivo infection with vIRF-ko RRV resulted in earlier and sustained production of proinflammatory cytokines and earlier induction of an anti-RRV T cell response compared to wild-type RRV infection. These findings reveal the broad impact that vIRFs have on pathogenesis and the immune response in vivo and are the first to validate the importance of vIRFs during de novo infection in the host.  相似文献   

8.
Murine immune interferon (Mu-IFN-gamma) can be radiolabeled with [gamma-32P]ATP by the catalytic subunit of cAMP-dependent protein kinase. The resulting 32P-labeled Mu-IFN-gamma (32P-Mu-IFN-gamma) with high radiological specific activity (60-260 muCi/micrograms) retains biological activity. Acid hydrolysis of 32P-Mu-IFN-gamma or 32P-labeled human IFN-gamma leads to the release of [32P]phosphoserine but not phosphothreonine or phosphotyrosine. With 32P-Mu-IFN-gamma, we have demonstrated that there are 5 X 10(3) to 1.5 X 10(4) receptors per-cell on several murine cell lines of diverse origin and that the Kd at 24 degrees C for these cells is in the range of 1 X 10(-10) to 1 X 10(-9) M. Covalent binding of 32P-Mu-IFN-gamma to its receptor results in the formation of several specific high-molecular weight products, the major one of which has an apparent molecular weight of 90,000-100,000. If this represents a 1:1 complex of Mu-IFN-gamma and its receptor (or its binding subunit), the murine interferon gamma receptor has a molecular weight of 75,000-85,000.  相似文献   

9.
A century after the discovery of Trypanosoma cruzi in a child living in Lassance, Minas Gerais, Brazil in 1909, many uncertainties remain with respect to factors determining the pathogenesis of Chagas disease (CD). Herein, we simultaneously investigate the contribution of both host and parasite factors during acute phase of infection in BALB/c mice infected with the JG and/or CL Brener T. cruzi strains. JG single infected mice presented reduced parasitemia and heart parasitism, no mortality, levels of pro-inflammatory mediators (TNF-α, CCL2, IL-6 and IFN-γ) similar to those found among naïve animals and no clinical manifestations of disease. On the other hand, CL Brener single infected mice presented higher parasitemia and heart parasitism, as well as an increased systemic release of pro-inflammatory mediators and higher mortality probably due to a toxic shock-like systemic inflammatory response. Interestingly, coinfection with JG and CL Brener strains resulted in intermediate parasitemia, heart parasitism and mortality. This was accompanied by an increase in the systemic release of IL-10 with a parallel increase in the number of MAC-3+ and CD4+ T spleen cells expressing IL-10. Therefore, the endogenous production of IL-10 elicited by coinfection seems to be crucial to counterregulate the potentially lethal effects triggered by systemic release of pro-inflammatory mediators induced by CL Brener single infection. In conclusion, our results suggest that the composition of the infecting parasite population plays a role in the host response to T. cruzi in determining the severity of the disease in experimentally infected BALB/c mice. The combination of JG and CL Brener was able to trigger both protective inflammatory immunity and regulatory immune mechanisms that attenuate damage caused by inflammation and disease severity in BALB/c mice.  相似文献   

10.
11.
Venezuelan equine encephalitis virus (VEEV) is a highly infectious alphavirus endemic in parts of Central and South America. The disease is transmitted by mosquitoes, and the natural reservoir is the small rodent population, with epidemics occurring in horses and occasionally humans. Following infection, VEEV replicates in lymphoid tissues prior to invasion of the central nervous system. Treatment of VEEV-infected BALB/c mice with polyethylene glycol-conjugated alpha interferon (PEG IFN-alpha) results in a greatly enhanced survival from either a subcutaneous or an aerosol infection. Virus is undetectable within PEG IFN-alpha-treated individuals by day 30 postinfection (p.i.). Treatment results in a number of changes to the immune response characteristics normally associated with VEEV infection. Increased macrophage activation occurs in PEG IFN-alpha-treated BALB/c mice infected with VEEV. The rapid activation of splenic CD4, CD8, and B cells by day 2 p.i. normally associated with VEEV infection is absent in PEG IFN-alpha-treated mice. The high tumor necrosis factor alpha production by macrophages from untreated mice is greatly diminished in PEG IFN-alpha-treated mice. These results suggest key immunological mechanisms targeted by this lethal alphavirus that can be modulated by prolonged exposure to IFN-alpha.  相似文献   

12.
We investigated the expression of an acquired host resistance against Staphylococcus aureus infection in mice. When C57BL/6 mice were immunized with viable S. aureus and challenged with S. aureus eight weeks later, the elimination of S. aureus from the spleen and liver was enhanced in the immunized mice compared with the nonimmunized mice. When gamma interferon (IFN-gamma(-/-)) mice were immunized and challenged, the bacterial numbers in the organs of immunized mice were comparable to those in the nonimmunized mice, suggesting that IFN-gamma plays a critical role in an acquired host resistance against S. aureus infection. IFN-gamma(-/-) mice produced the lower level of anti-S. aureus immunoglobulin M (IgM) and IgG2a antibodies compared with C57BL/6 mice. To elucidate the role of IFN-gamma produced during a challenge with S. aureus, a single injection of anti-IFN-gamma monoclonal antibody to mice was carried out 1 h before challenge. An acquired resistance against S. aureus infection was inhibited by injecting with anti-IFN-gamma monoclonal antibody. However, anti-IFN-gamma monoclonal antibody treatment failed to modulate anti-S. aureus IgM, IgG1 or IgG2a responses in these animals. These results demonstrated that IFN-gamma is required for an acquired resistance against S. aureus infection in mice. However, IFN-gamma induced during the challenge failed to affect the secondary antibody responses.  相似文献   

13.
14.
15.
Reproduction of entomopathogenic nematodes requires that they escape recognition by a host's immune system or that they have mechanisms to escape encapsulation and melanization. We investigated the immune responses of larvae for the greater wax moth (Galleria mellonella), tobacco hornworm (Manduca sexta), Japanese beetle (Popillia japonica), northern masked chafer (Cyclocephala borealis), oriental beetle (Exomala orientalis) and adult house crickets (Acheta domesticus), challenged with infective juveniles from different species and strains of entomopathogenic nematodes. The in vivo immune responses of hosts were correlated with nematode specificity and survival found by infection assays. In P. japonica, 45% of injected infective juveniles from Steinernema glaseri NC strain survived; whereas the hemocytes from the beetle strongly encapsulated and melanized the Heterorhabditis bacteriophora HP88 strain, S. glaseri FL strain, Steinernema scarabaei and Steinernema feltiae. Overall, H. bacteriophora was intensively melanized in resistant insect species (E. orientalis, P. japonica and C. borealis) and had the least ability to escape the host immune response. Steinernema glaseri NC strain suppressed the immune responses in susceptible hosts (M. sexta, E. orientalis and P. japonica), whereas S. glaseri FL strain was less successful. Using an in vitro assay, we found that hemocytes from G. mellonella, P. japonica, M. sexta and A. domestica recognized both nematode species quickly. However, many S. glaseri in M. sexta and H. bacteriophora in G. mellonella escaped from hemocyte encapsulation by 24h. These data indicate that, while host recognition underlies some of the differences between resistant and susceptible host species, escape from encapsulation following recognition can also allow successful infection. Co-injected surface-coat proteins from S. glaseri did not protect H. bacteriophora in M. sexta but did protect H. bacteriophora in E. orientalis larva; therefore, surface coat proteins do not universally convey host susceptibility. Comparisons of surface coat proteins by native and SDS-PAGE demonstrated different protein compositions between H. bacteriophora and S. glaseri and between the two strains of S. glaseri.  相似文献   

16.
Infections elicit diverse responses in the host that include activation of the innate immune system, inflammation and cell death. Pathogen-triggered cell death is manifested by various morphologies indicative of apoptosis, pyroptosis, oncosis or autophagic cell death. The question of whether cell death performs a physiologic function during infection is key to understanding host-pathogen interactions and pathogenesis, and devising targeted therapeutic strategies for infectious diseases. In this review, we examine the different modes of cell death employed by the host during infection, the strategies used by pathogens to manipulate the cell death process and the outcome of cell death, that is, whether it is protective for the host or on the contrary favorable for pathogen dissemination. The pathways leading to cell death by infection are discussed with a focus on the role of pattern recognition receptors in the activation of survival and death effectors.  相似文献   

17.
18.
Koyama S  Ishii KJ  Coban C  Akira S 《Cytokine》2008,43(3):336-341
In viral infections the host innate immune system is meant to act as a first line defense to prevent viral invasion or replication before more specific protection by the adaptive immune system is generated. In the innate immune response, pattern recognition receptors (PRRs) are engaged to detect specific viral components such as viral RNA or DNA or viral intermediate products and to induce type I interferons (IFNs) and other pro-inflammatory cytokines in the infected cells and other immune cells. Recently these innate immune receptors and their unique downstream pathways have been identified. Here, we summarize their roles in the innate immune response to virus infection, discrimination between self and viral nucleic acids and inhibition by virulent factors and provide some recent advances in the coordination between innate and adaptive immune activation.  相似文献   

19.
20.
Antiserum to human gamma interferon (IFN gamma) was produced in rabbits immunized with partially purified (10(4.8) to 10(6.2) antiviral U/mg protein) staphylococcal enterotoxin A-induced IFN gamma. Staphylococcal enterotoxins, phytohemagglutinin M, concanavalin A, and pokeweed mitogen-induced antiviral activity in human leukocyte cultures was neutralized to undetectable levels by the antiserum. However, human leukocyte interferon (IFN alpha), human fibroblast interferon (IFN beta), and mouse interferons were not neutralized by the antiserum. After determining the antiserum was specific for IFN gamma and did not neutralize other known types of interferon, it was used with antibody to human IFN alpha to demonstrate the type(s) of interferon stimulated by some new inducers and antigens. Galactose oxidase- and calcium ionophore-induced interferons were neutralized to undetectable levels by the antiserum to IFN gamma. Interferon produced in leukocyte cultures from tuberculin-negative individuals stimulated with tuberculin-purified protein derivative or old tuberculin was IFN alpha, whereas interferon from tuberculin-positive individuals was a combination of alpha and gamma IFN. In addition, the antiserum neutralized the anticellular and natural killer cell enhancement activities of IFN gamma preparations. The specificity of this antiserum for IFN gamma indicates that it is an additional, powerful tool for identifying and classifying known and new interferons produced in vitro or in vivo and for investigating the role(s) of IFN gamma during the course of infectious, neoplastic, and autoimmune diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号