首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Effects of water stress at different stages of plant growth on leaf relative water content (RWC), osmotic potential (Ψos) and changes in contents of chlorophyll, abscisic acid (ABA), zeatin riboside (t-ZR), ethylene and proline in six cultivars of French bean (Phaseolus vulgaris L.) were studied. Under water stress, Ψos and RWC were highest in cv. Contender and lowest in cvs. IIHR-909 and Sel-2. The increase in contents of ABA and proline was marked in cv. Contender followed by cv. UPF-626. Decrease in t-ZR and chlorophyll contents was prominent in cv. IIHR-909. Ethylene production surged in all the cultivars under 4- and 8-d stress and declined under 12-d stress. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Three cultivars differing in their susceptibility to water stress were compared—Phaseolus vulgaris cv. Carioca (susceptible), Vigna unguiculata cv. IT83D (intermediately tolerant) and V. unguiculata cv. EPACE-1 (tolerant)—during an imposed water stress treatment. Variation in leaf gas exchange (i.e. assimilation and stomatal conductance) and leaf relative water content in response to progressive substrate water depletion were investigated. To verify the extent of the injury caused by the drought treatment, leaf gas exchange was measured after rehydration. In the three cultivars, stomatal conductance declined before leaf relative water content was affected. P. vulgaris showed the largest decrease in the rate of stomatal conductance with decreasing substrate water content compared to both V. unguiculata cultivars. Photosynthetic assimilation rates were largely dependent on stomatal aperture, but there was evidence of the participation of non-stomatal factors in the reduction of CO2 fixation. The response of leaf gas exchange parameters to severe water stress conditions differed significantly between P. vulgaris and V. unguiculata cultivars. After rehydration, cultivars can be characterised according to the degree of injury induced by the drought treatment: V. unguiculata cv. EPACE-1 as the least affected, V. unguiculata cv. IT83D slightly affected and P. vulgaris cv. Carioca strongly affected. Similar ranking was obtained with experiments previously performed at a cellular and subcellular level. Our results confirm the utility of physiological parameters as early screening tools for drought resistance in bean cultivars.  相似文献   

3.
以抗旱性强的小麦品种昌乐5号和抗旱性弱的鲁麦5号的幼苗为材料,研究了随着干旱胁迫的加剧,小麦叶片相对含水量、气孔导度和内源激素水平的变化.结果表明,叶片的气孔导度和细胞激动素与脱落酸含量的比值(CTKs/ABA)呈较强的线性正相关关系而与叶片RWC的相关关系较弱,说明气孔导度受CTKs/ABA调控,而不是受叶片RWC的调控.在不同强度的干旱胁迫下我们可以利用CTKs/ABA的变化判断品种抗旱性大小:①抗旱力强的小麦品种叶片的平均CTKs/ABA值较高,而弱者较低,说明强者内源促进型激素含量相对较高,从而在干旱胁迫下保持较高的生活力.②抗旱力强的小麦品种叶片CTKs/ABA与干旱处理天数呈二次负相关关系,而弱者是线性负相关关系,说明强者具有较强的抗逆缓冲能力.③抗旱力强的小麦品种成熟叶(第二叶)CTKs/ABA下降快,新叶(第三叶)下降慢,而弱者反之,说明抗旱性强者可能存在着较强的从成熟叶向新叶的物质运输从而具有自我保护性调节机制.  相似文献   

4.
Two tropical tree species, Acacia confusa and Leucaena leucocephala, were used to study the relationships among stomatal conductance, xylem ABA concentration and leaf water potential during a soil drying and rewatering cycle. Stomatal conductance of both A. confusa and L. leucocephala steadily decreased with the decreases in soil water content and pre-dawn leaf water potential. Upon rewatering, soil water content and pre-dawn leaf water potential rapidly returned to the control levels, whereas the reopening of stomata showed an obvious lag time. The length of this lag time was highly dependent not only upon the degree of water stress but also on plant species. The more severe the water stress, the longer the lag time. When A. confusa and L. leucocephala plants were exposed to the same degree of water stress (around –2.0 MPa in pre-dawn leaf water potential), the stomata of A. confusa reopened to the control level 6 days after rewatering. However, it took L. leucocephala about 14 days to reopen fully. A very similar response of leaf photosynthesis to soil water deficit was also observed for both species. Soil drying resulted in a significant increase in leaf and xylem ABA concentrations in both species. The more severe the water stress, the higher the leaf and xylem ABA concentrations. Both leaf ABA and xylem ABA returned to the control level following relief from water deficit and preceded the full recovery of stomata, suggesting that the lag phase of stomatal reopening was not controlled by leaf and/or xylem ABA. In contrast to drying the whole root system, drying half of the root system did not change the leaf water relations, but caused a significant increase in xylem ABA concentration, which could fully explain the decrease of stomatal conductance. After rewatering, the stomatal conductance of plants in which half of the roots were dried recovered more rapidly than those of whole-root dried plants, indicating that the leaf water deficit that occurred during the drying period was related to the post-stress stomatal inhibition. These results indicated that the decrease in stomatal conductance caused by water deficit was closely related to the increase in xylem ABA, but xylem ABA could not fully explain the reopening of stomata after relief of water stress, neither did the leaf ABA. Some unknown physiological and/or morphological processes in the guard cells may be related to the recovery process.  相似文献   

5.
Changes in transpiration and stomatal conductance and other characteristics of water relations, growth rate, and ABA content have been followed in short- and long-term experiments in two barley cultivars (cv. Michaelovsky and cv. Prairie) with contrasting drought resistance characteristics. The aim of this work was to reveal the importance of stomatal behavior in salt tolerance and also the involvement of ABA in its control. Salinity stress brought about a reduction in stomatal conductance in both cultivars, but the effect was initially more pronounced in the drought-tolerant cv. Prairie than in the drought-sensitive cv. Michaelovsky. The difference between the two cultivars changed with time, and later on transpiration and stomatal conductance became higher in Prairie than in Michaelovsky. In both the short and the long term, the extent of stomatal closure due to salinity correlated with the level of ABA accumulation in the leaves of the plants. Fast stomatal closure was likely to be responsible for growth resumption after an initial arrest by salt treatment and for the maintenance of extension growth later on, thus enabling its higher rate in Prairie than in Michaelovsky plants. Leaves of Prairie accumulated less toxic chloride ions, which may be the result of a lower transpiration rate observed during the first phase of salt treatment. A subsequent increase in stomatal conductance observed in Prairie is likely to ameliorate their gas exchange and maintain photosynthesis and growth. Thus, differences between the cultivars in the stomatal response to salinity changed with time, which may be why there are discrepancies in the attempts to relate stomatal conductance to salt tolerance observed in literature.  相似文献   

6.
This paper is a continuation of our studies related to the response of two tomato cultivars: Robin and New Yorker to chilling: the later is more tolerant to chilling than the former one (Starck et al. 1994). The concentration of ABA in the xylem sap and ABA delivery rate (calculated as the amount of ABA exuded in 2h from the cut stump, following shoot removal) were estimated by ELISA. The relative water content (RWC) of the leaf blades and stomatal resistance (RS) were also measured. Tomato plants were grown in a greenhouse, under noncontrolled conditions. Before chilling some of the plants were drought hardened for 10 days (H). As an consequence of water deficit only New Yorker growth slightly decreased. Plants were chilled to 2–5 °C during three consecutive, 16-h nights, preceded by warm days, which caused a decrease in the RWC of leaf blades. Chilling did not decreased leaf blade hydration significantly, but drastically increased the concentration of ABA in the xylem sap in more chilling tolerant cv. New Yorker only. The delivery rate of ABA was markedly enhanced in both cultivars, but much more in New Yorker. Drought hardening increased ABA delivery rate in cv. Robin only, especially after chilling. The lack of correlation between changes in the RWC of leaf blades after low temperature treatment and the concentration of ABA in the xylem sap as well as its delivery rate suggest, that in both tomato cultivars chilling increased ABA level directly, not as an secondery effect of temperature-induced water deficit.  相似文献   

7.
Water-deficit stress (–1.0 MPa through polyethylene glycol 6000 for 2 h) decreased the relative water content (RWC) and leaf water potential (LWP) in the two jute species Corchorus capsularis L. (cv. JRC 212) and C. olitorius L. (cv. JRO 632), more so in the latter. Pretreatment of seeds with 5 m M CaCl2 improved the water uptake capacity without altering stomatal movement, whereas foliar spraying with 0.01 m M ABA reduced transpiration through the reduction of stomatal aperture. A combination of both treatments, i.e. seed treatment followed by foliar spraying, additively improved the water status under water-deficit stress. Efflux of K+ from the guard cells followed by stomatal closure was more rapid in C. capsularis than in C. olitorius under water-deficit stress. Uptake of [32P]-phosphate under water-deficit stress decreased more in C. olitorius than in C. capsularis and treatment of seeds with Ca2+ counteracted this decrease more markedly in the former species. These findings indicate that C. olitorius is more susceptible than C. capsularis to water-deficit stress.  相似文献   

8.
Leaf water potentials of Phaseolus vulgaris L. plants exposed to a -3.0 bar root medium were reduced to between -7 and -9 bars within 25 min and remained constant for the next several hours. This treatment led to considerable variation between leaves in both abscisic-acid (ABA) content and Rs, although the two were well correlated after a 5-h treatment. There was an apparent 7-fold increase in leaf ABA levels necessary to initiate stomatal closure when plants were exposed to a -3.0 bar treatment, but when plants were exposed to a -5.0 bar stress Rs values increased prior to any detectable rise in ABA levels. To explain these seemingly contradictory results, we suggest that the rate of ABA synthesis in the leaf, rather than the total ABA content, determines the status of the stomatal aperture.Abbreviations ABA abscisic acid - PEG polyethylene glycol - Rs stomatal diffusion resistance of lower leaf surface - leaf water potential  相似文献   

9.
Differences in abscisic acid (ABA) accumulation between two olive cultivars were studied by enzyme-linked immunosorbent assay in roots and leaves, leaf water potential (Ψl), stomatal conductance (g s) as well as photosynthetic rate (A) were also determined in well-watered (WW) and water-stressed (WS) plants of two olive cultivars ‘Chemlali’ and ‘Chetoui’. ‘Chemlali’ was able to maintain higher leaf CO2 assimilation rate and leaf stomatal conductance throughout the drought cycle when compared with ‘Chetoui’. Furthermore, leaf water potential of ‘Chemlali’ decreased in lower extent than in Chetoui in response to water deficit. Interestingly, significant differences in water-stress-induced ABA accumulation were observed between the two olive cultivars and reflect the degree of stress experienced. Chemlali, a drought tolerant cultivar, accumulated lower levels of ABA in their leaves to regulate stomatal control in response to water stress compared to the drought sensitive olive cultivar ‘Chetoui’ which accumulated ABA in large amount.  相似文献   

10.
The flacca mutant in tomato (Lycopersicon esculentum Mill. cv Rheinlands Ruhm) was employed to examine the effects of a relatively constant diurnal water stress on leaf growth and water relations. As the mutant is deficient in abscisic acid (ABA) and can be phenotypically reverted to the wild type by applications of the growth substance, inferences can be made concerning the involvement of ABA in responses to water stress. Water potential and turgor were lower in leaves of flacca than of Rheinlands Ruhm, and were increased by ABA treatment. ABA decreased transpiration rates by causing stomatal closure and also increased the hydraulic conductance of the sprayed plants. Osmotic adjustment did not occur in flacca plants despite the daily leaf water deficits. Stem elongation was inhibited by ABA, but leaf growth was promoted. It is concluded that, in some cases, ABA may promote leaf growth via its effect on leaf water balance.  相似文献   

11.
Responses of photosynthetic rate and stomatal conductance to water stress as weI1 as the relationship between photosynthetic rate and stomatal conductance were investigated with soybean cultivars “Ludou No. 4” and “7605”. The former was a high yield cultivars widely used in Shandong province, and the latter was a small grain soybean line bred by Shandong Academy of Agricultural science. Soil water stress decreased leaf apparent photosynthetic rate and stomatal conductance of two soybean cultivars, and “Ludou No. 4” decreased more than “7605”. At the same value of water potential, photosynthetic rate and stomatal conductance of “7605” were higher than those of “Ludou No,4”,but the rate of stomatal closure for “7605” was higher than “Ludou No. 4”. Decreasing of stomatal conductance caused rising of leaf temperature of two soybean cultivars, and the rising of “7605” was more rapid than “Ludou No. 4”, but at the same treatment of water stress, leaf temperature of “Ludou No. 4” was higher than “7605”. Leaf water use efficiecy (WUE) of two soybean cultivars were decreased under water stress, and the rate of decreasing in “Ludou No.4” was more rapid than in “7605”. These results showed that “7605” was more resistant to water:stress than “Ludou No. 4”.  相似文献   

12.
The effect of acute ozone exposure on the stomatal conductance and leaf water content during rapid desiccation was examined in leaves of two tobacco cultivars, ozone sensitive cv. BelW3 and ozone tolerant cv. Samsun. The relative rate of stomatal closure was constant during leaf desiccation in cv. Samsun but decreased in cv. BelW3 in both ozonated and control plants. Ozone exposure increased the relative rate of stomatal closure and transpiration rate (measured on the following day) in cv. Samsun, but reduced the respective parameters in cv. BelW3. As a result, the plants of ozone-sensitive cultivar, treated with ozone, lost more water during desiccation than control plants. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Abstract. Stomatal conductance, leaf water potential, soil water potential and concentration of abscisic acid (ABA) in the xylem sap were measured on maize plants growing in the field, in two treatments with contrasting soil structures. Soil compaction affected the stomatal conductance, but this effect was no longer observed if the soil water potential was increased by irrigation. Differences in leaf water potential did not account for the differences in conductance between treatments. Conversely, the relationship between stomatal conductance and concentration of ABA in the xylem sap was consistent during the experiment. The proposed interpretation is that stomatal conductance was controlled by the root water potential via an ABA message. Control of the stomatal conductance by the leaf water potential or by an effect of mechanical stress on the roots is unlikely.  相似文献   

14.
In many cultivars of Vitis vinifera periods of mild water stress during ripening are thought to increase grape quality for winemaking, even though yields may be negatively affected. Because abscisic acid (ABA) is involved in the signaling of water stress in plants, we examine the effects of the ABA signal being given without the concomitant water stress. ABA at 250 mg l−1 was sprayed weekly or biweekly from bud-burst until harvest onto the leaves of vineyard-grown plants of cv. Cabernet Sauvignon. For ABA-treated plants berry yield per bunch and per plant was significantly increased (1.5- to 2.0-fold) across three consecutive harvests (2005 through 2007). Number of berries per bunch and per plant was the primary basis for the significant crop increases, although bunches per plant also tended to increase (1.1- to 1.3-fold) across all three harvests. Other parameters assessed included number of internodes, shoot length, leaf area, leaf water potential at midday, photosynthesis, and stomatal conductance. These parameters showed no significant change with ABA treatment, although shoot length tended to be reduced, as was leaf area relative to control plants. The significantly increased fruit yields were thus accomplished without accompanying increases in leaf photosynthesis and leaf areas. Juice at harvest had equal levels of sugars (Brix) and somewhat higher levels of anthocyanins and total polyphenols relative to control values. The two latter trends continued for the resultant wine across two vintage years. In conclusion, three seasons of experimental trials have demonstrated that ABA application can significantly enhance yield per plant in the field-grown grape (cv. Cabernet Sauvignon) by favoring increased berry set without diminishing the quality of the fruit for winemaking use.  相似文献   

15.
Changes on abscisic acid (ABA), jasmonic acid (JA) and indole-3-acetic acid (IAA) levels were investigated in papaya seedlings (Carica papaya L.) cv. “Baixinho de Santa Amalia” under progressive water stress and subsequent rehydration. Also, the behaviour of leaf gas exchange and leaf growth was determined under stress condition. The results indicated that ABA and JA differ in their pattern of change under water stress. ABA continuously increased in leaves and roots during the whole period of stress whereas JA showed a sharp increase and a later decrease in both organs. Re-watering reduced rapidly (24 h) leaf and root ABA to control levels whereas the influence on JA levels could not be assessed. Drought and recovery did not alter IAA levels in leaf and root tissues of papaya seedlings. In addition, water stress reduced stomatal conductance, photosynthetic rate, transpiration rate, the percentage of attached leaves and leaf growth. Rehydration reverted in few days the effects of stress on leaf growth and gas exchange parameters. Overall, the data suggest that ABA could be involved in the induction of several progressive responses such as the induction of stomatal closure and leaf abscission to reduce papaya water loss. In addition, the pattern of accumulation of JA is compatible with a triggering signal upstream ABA. The unaltered levels of IAA could suggest a certain adaptive ability of papaya to maintain active physiological processes under progressive drought stress.  相似文献   

16.
The effects of NaCl stress on the activity of antioxidant enzymes, lipid peroxidation, cell membrane stability, net photosynthetic rate, gas-exchange, and chlorophyll content were investigated in two Jerusalem artichoke cultivars, Dafeng (salt-tolerant) and Wuxi (salt-sensitive), grown under control (nutrient solution) or salt stress (nutrient solution containing 75, 150, and 225 mM NaCl) conditions for 7 days. In leaves of salt-tolerant cv. Dafeng, superoxide dismutase (EC 1.15.1.1), peroxidase (EC 1.11.1.7), and catalase (EC 1.11.1.6) activities significantly increased as compared to the controls, whereas no significant change was observed in cv. Wuxi. Lipid peroxidation and cell membrane injury were enhanced in both cultivars. Net photosynthesis and stomatal conductance decreased in response to salt stress, but cv. Dafeng showed a smaller reduction in photosynthesis than cv. Wuxi. The results indicated that stomatal aperture limited leaf photosynthetic capacity in the NaCl-treated plants of both cultivars. However, significant reduction in the leaf chlorophyll content due to NaCl stress was observed only in cv. Wuxi. These results suggested that salt-tolerant Jerusalem artichoke varieties may have a better protection against reactive oxygen species, at least in part, by increasing the activity of antioxidant enzymes under salt stress.  相似文献   

17.
研究了周期性土壤干旱期间气孔对木质部ABA响应的灵敏度的变化以及叶片水势对灵敏度的影响。实验结果证明了木质部ABA浓度是反映根系周围土壤水分状况的一个指标的结论。土壤周期性干旱不影响木质部ABA浓度对土壤水分状况的依赖关系,但显著地提高了气孔对木质部ABA 响应的灵敏度。根据对实测数据的数学模拟结果显示,引起气孔导度下降50% 所需的木质部ABA浓度从第一轮土壤干旱的750 nmol/L降至第二轮土壤干旱的550 nmol/L。分根实验的结果表明,叶片水分亏缺显著提高了气孔对木质部ABA 的响应的灵敏程度,全根干旱中引起气孔导度下降50 % 所需的木质部ABA 浓度比半根干旱的小2 ~4 倍。这表明,气孔对木质部ABA响应的灵敏度不是一个固定的特性,可随植物生长环境及许多其他因素的变化而表现出很大的差异  相似文献   

18.
Terry, P. H., Krizek, D. T. and Mirecki, R. M. 1988. Genotypic variation in coleus in the ability to accumulate abscisic acid in response to water deficit. - Physiol. Plant. 72: 441–449.
Abscisic acid (ABA) concentration and plant and soil water potentials were determined in leaves of three cultivars of Coleus blumei Benth. cvs. Marty, Buckley Supreme and PI354190, chosen for their differences in sensitivity to drought, SO2 and/or chilling stress. Plants were subjected to 'gradual' soil moisture stress (SMS) for 0–6 days, during which time the soil dried out slowly and to more 'rapid' SMS for 0–9 days where the soil dried out at a faster rate. Plants were propagated from clonal stock in the greenhouse and transferred to the growth chamber, where they were maintained for 1 week prior to beginning water stress treatment. ABA concentration was determined as the methyl ester using a gas chromatography - electron capture detector method. Samples for ABA determinations were taken from the third pair of leaves from the apex at the same time each day (1430 h). Measurements of stomatal conductance (C5) and leaf water potential (φl) were made on the fourth pair of leaves from the apex, using the same plants as those sampled for ABA. During the more rapid stress portion of the study soil matric potentials (φm) were monitored on a daily basis. Despite large cultivar differences in ABA concentration at 0–6 days, by 7–9 days these differences had largely disappeared. Except for drought-insensitive cv. Marty, there was generally little correlation between ABA levels and measurements of plant and soil water status at 7–9 days.  相似文献   

19.
Water status parameters, flag leaf photosynthetic activity, abscisic acid (ABA) levels, grain yield, and storage protein contents were investigated in two drought-tolerant (Triticum aestivum L. cv. MV Emese and cv. Plainsman V) and two drought-sensitive (cvs. GK élet and Cappelle Desprez) wheat genotypes subjected to soil water deficit during grain filling to characterize physiological traits related to yield. The leaf water potential decreased earlier and at a higher rate in the sensitive than in the tolerant cultivars. The net CO2 assimilation rate (P N) in flag leaves during water deficit did not display a strict correlation with the drought sensitivity of the genotypes. The photosynthetic activity terminated earliest in the tolerant cv. Emese, and the senescence of flag leaves lasted 7 days longer in the sensitive Cappelle Desprez. Soil drought did not induce characteristic differences between sensitive and tolerant cultivars in chlorophyll a fluorescence parameters of flag leaves during post-anthesis. Changes in the effective quantum yield of PSII (ΦPSII) and the photochemical quenching (qP) depended on the genotypes and not on the sensitivity of cultivars. In contrast, the levels of ABA in the kernels displayed typical fluctuations in the tolerant and in the sensitive cultivars. Tolerant genotypes exhibited an early maximum in the grain ABA content during drought and the sensitive cultivars maintained high ABA levels in the later stages of grain filling. In contrast with other genotypes, the grain number per ear did not decrease in Plainsman and the gliadin/glutenin ratio was higher than in the control in Emese during drought stress. A possible causal relationship between high ABA levels in the kernels during late stages of grain filling and a decreased grain yield was found in the sensitive cultivars during drought stress.  相似文献   

20.
Abstract Soil waterlogging decreased leaf conductance (interpreted as stomatal closure) of vegetative pea plants (Pisuin sativum L. cv. ‘Sprite’) approximately 24 h after the start of flooding, i.e. from the beginning of the second 16 h-long photo-period. Both adaxial and abaxial surfaces of leaves of various ages and the stipules were affected. Stomatal closure was sustained for at least 3 d with no decrease in foliar hydration measured as water content per unit area, leaf water potential or leaf water saturation deficit. Instead, leaves became increasingly hydrated in association with slower transpiration. These changes in the waterlogged plants over 3 d were accompanied by up to 10-fold increases in the concentration of endogenous abscisic acid (ABA). Waterlogging also increased foliar hydration and ABA concentrations in the dark. Leaves detached from non-waterlogged plants and maintained in vials of water for up to 3 d behaved in a similar way to leaves on flooded plants, i.e. stomata closed in the absence of a water deficit but in association with increased ABA content. Applying ABA through the transpiration stream to freshly detached leaflets partially closed stomata within 15 min. The extractable concentrations of ABA associated with this closure were similar to those found in flooded plants. When an ABA-deficient ‘wilty’ mutant of pea was waterlogged, the extent of stomatal closure was less pronounced than that in ordinary non-mutant plants, and the associated increase in foliar ABA was correspondingly smaller. Similarly, waterlogging closed stomata of tomato plants within 24 h, but no such closure was seen in ‘flacca’, a corresponding ABA-deficient mutant. The results provide an example of stomatal closure brought about by stress in the root environment in the absence of water deficiency. The correlative factor operating between the roots and shoots appeared to be an inhibition of ABA transport out of the shoots of flooded plants, causing the hormone to accumulate in the leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号