首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The COOH-terminal tail of mammalian neurofilament heavy subunit (NF-H), the largest neurofilament subunit, contains 44-51 lysine-serine-proline repeats that are nearly stoichiometrically phosphorylated after assembly into neurofilaments in axons. Phosphorylation of these repeats has been implicated in promotion of radial growth of axons, control of nearest neighbor distances between neurofilaments or from neurofilaments to other structural components in axons, and as a determinant of slow axonal transport. These roles have now been tested through analysis of mice in which the NF-H gene was replaced by one deleted in the NF-H tail. Loss of the NF-H tail and all of its phosphorylation sites does not affect the number of neurofilaments, alter the ratios of the three neurofilament subunits, or affect the number of microtubules in axons. Additionally, it does not reduce interfilament spacing of most neurofilaments, the speed of action potential propagation, or mature cross-sectional areas of large motor or sensory axons, although its absence slows the speed of acquisition of normal diameters. Most surprisingly, at least in optic nerve axons, loss of the NF-H tail does not affect the rate of transport of neurofilament subunits.  相似文献   

2.
Excessive accumulation of neurofilaments in the cell bodies and proximal axons of motor neurons is a major pathological hallmark of motor neuron diseases. In this communication we provide evidence that the neurofilament light subunit (68 kDa) and G-actin are capable of forming a stable interaction. Cytochalasin B, a cytoskeleton disrupting agent that interrupts actin-based microfilaments, caused aggregation of neurofilaments in cultured mesencephalic dopaminergic neurons, suggesting a possible interaction between neurofilaments and actin; which was tested further by using crosslinking reaction and affinity chromatography techniques. In the cross-linking experiment, G-actin interacted with individual neurofilament subunits and covalently cross-linked disuccinimidyl suberate, a homobifunctional cross-linking reagent. Furthermore, G-actin was extensively cross-linked to the light neurofilament subunit with this reagent. The other two neurofilament subunits showed no cross-linking to G-actin. Moreover, neurofilament subunits were retained on a G-actin coupled affinity column and were eluted from this column by increasing salt concentration. All three neurofilament subunits became bound to the G-actin affinity column. However, a portion of the 160 and 200 kDa neurofilament subunits did not bind to the column, and the remainder of these two subunits eluted prior to the 68 kDa subunit, suggesting that the light subunit exhibited the highest affinity for G-actin. Moreover, neurofilaments demonstrated little or no binding to F-actin coupled affinity columns. The phosphorylation of neurofilament proteins with protein kinase C reduced its cross-linking to G-actin. The results of these studies are interpreted to suggest that the interaction between neurofilaments and actin, regulated by neurofilament phosphorylation, may play a role in maintaining the structure and hence the function of dopaminergic neurons in culture.  相似文献   

3.
The phosphorylation and dephosphorylation of specific proteins was demonstrated directly in the intact vertebrate nervous system in vivo. By exploiting the neurons' ability to segregate a select group of cytoskeletal proteins from most other phosphorylated constituents of the cell by axoplasmic transport, we were able to examine the dynamics of phosphate turnover on neurofilament proteins in mouse retinal ganglion cell neurons simultaneously labeled with [32P]orthophosphate and [3H]proline in vivo. Three [3H]proline-labeled neurofilament protein (NFP) subunits, designated H (160-200 kDa), M (135-145 kDa), and L (68-70 kDa), entered optic axons in a mole:mole ratio similar to that of isolated axonal neurofilaments, supporting the notion that newly synthesized NFPs are transported along axons as assembled neurofilaments. NFP subunits incorporated high levels of 32P before reaching axonal sites at the level of the optic nerve. As neurofilaments were transported along axons, however, many initially incorporated [32P]phosphate groups were removed. Loss of these phosphate groups occurred to a different extent on each subunit. A minimum of 50-60 and 35-40% of the labeled phosphate groups was removed in a 5-day period from the L and M subunits, respectively. By contrast, the H subunit exhibited relatively little or no phosphate turnover during the same period. Dephosphorylation of L in axons is accompanied by a decrease in its net state of phosphorylation; changes in the phosphorylation state of H and M, however, also reflect ongoing addition of phosphates to these polypeptides during axonal transport (Nixon, R.A., Lewis, S.E., and Marotta, C.A. (1986) J. Neurosci., in press). The possibility is raised that dynamic rearrangements of phosphate topography on NFPs represent a mechanism to coordinate interactions of neurofilaments with other proteins as these elements are transported and incorporated into the stationary cytoskeleton along retinal ganglion cell axons.  相似文献   

4.
Neurofilaments freshly isolated from bovine spinal cord form a reversible gel in vitro, consisting of nearly parallel and interlinked filaments organized in bundles. This phenomenon is obtained above a critical neurofilament concentration and is highly sensitive to denaturation. No gelation occurs with neurofilaments reconstituted from urea-solubilized subunits. The velocity of the gelation kinetics, optimum at a slightly acidic pH, is inhibited by low and high ionic strength and activated by millimolar concentrations of Mg2+ and other bivalent cations. No protein other than the purified neurofilament preparation itself (80-95% neurofilament triplet) is necessary for the formation of a gel. However, purified cytoskeletal proteins from microtubules and neurofilaments influence the viscosity of the native preparation. These observations suggest a reticulation in vitro between neurofilaments, dependent upon a fragile conformation of the polymers and possibly mediated through the high-Mr neurofilament subunits (200 kDa and 150 kDa). The significance of these results is discussed with regard to the inter-neurofilament cross-bridging in situ involving the 200 kDa subunit described by Hirokawa, Glicksman & Willard [(1984) J. Cell Biol. 98, 1523-1536].  相似文献   

5.
Immunochemical Characterization of Antisera to Rat Neurofilament Subunits   总被引:14,自引:7,他引:7  
Abstract: Antisera raised to the 68,000, 145,000 and 200,000 molecular weight subunits of rat neurofilaments were used for immunochemical staining of polypeptides separated by one- and two-dimensional gel electrophoresis. It was found that each antiserum reacts intensely with its corresponding neurofilament subunit and weakly with the other two subunits. All the antisera also react with a polypeptide of molecular weight 57,000 present in neurofilament-rich preparations from both rat spinal cord and peripheral nerve. This polypeptide is different from either tubulin or vimentin and may represent a neurofilament breakdown product, since it varied in amount from preparation to preparation. The three antisera also reacted with the polypeptide subunits of chicken and goldfish neurofilament despite the considerable difference in molecular weight between these subunits and those of mammalian neurofilament. Key Words: Neurofilaments–Antibodies–Immunochemical. Autilio-Gambetti L. et al. Immunochemical characterization of antisera to rat neurofilament subunits. J. Neurochem. 37, 1260-1265(1981).  相似文献   

6.
《The Journal of cell biology》1994,126(4):1031-1046
The high molecular weight subunits of neurofilaments, NF-H and NF-M, have distinctively long carboxyl-terminal domains that become highly phosphorylated after newly formed neurofilaments enter the axon. We have investigated the functions of this process in normal, unperturbed retinal ganglion cell neurons of mature mice. Using in vivo pulse labeling with [35S]methionine or [32P]orthophosphate and immunocytochemistry with monoclonal antibodies to phosphorylation- dependent neurofilament epitopes, we showed that NF-H and NF-M subunits of transported neurofilaments begin to attain a mature state of phosphorylation within a discrete, very proximal region along optic axons starting 150 microns from the eye. Ultrastructural morphometry of 1,700-2,500 optic axons at each of seven levels proximal or distal to this transition zone demonstrated a threefold expansion of axon caliber at the 150-microns level, which then remained constant distally. The numbers of neurofilaments nearly doubled between the 100- and 150- microns level and further increased a total of threefold by the 1,200- microns level. Microtubule numbers rose only 30-35%. The minimum spacing between neurofilaments also nearly doubled and the average spacing increased from 30 nm to 55 nm. These results show that carboxyl- terminal phosphorylation expands axon caliber by initiating the local accumulation of neurofilaments within axons as well as by increasing the obligatory lateral spacing between neurofilaments. Myelination, which also began at the 150-microns level, may be an important influence on these events because no local neurofilament accumulation or caliber expansion occurred along unmyelinated optic axons. These findings provide evidence that carboxyl-terminal phosphorylation triggers the radial extension of neurofilament sidearms and is a key regulatory influence on neurofilament transport and on the local formation of a stationary but dynamic axonal cytoskeletal network.  相似文献   

7.
Calcium-dependent protease activity was found associated with a neurofilament-enriched cytoskeleton isolated from the bovine spinal cord. The protease was extracted from the cytoskeleton by 0.6 M KCl, and purified to apparent homogeneity (3300-fold) by chromatography on organomercurial-Sepharose 4B, casein-Sepharose 4B, and Sepharose CL-6B. A cytosolic calcium-dependent protease was similarly purified from the bovine spinal cord, after the cytosol was fractionated on DEAE-cellulose. Both cytoskeleton-bound and cytosolic enzymes had an apparent molecular mass of 100 kDa as judged by gel filtration, and consisted of two subunits (79 kDa and 20 kDa) upon sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Both enzymes exhibited caseinolytic activity with 0.5 mM Ca2+ and above, and the activity was strongly inhibited by various thiol protease inhibitors. In the presence of 0.1-0.2 mM Ca2+, the 68-kDa and 160-kDa components, and to a lesser extent the 200-kDa component, of the neurofilament triplet polypeptides were degraded by the cytosolic protease, whereas the cytoskeleton-bound protease needed two-fold higher concentration of Ca2+ to degrade the neurofilaments. Nevertheless, the cytoskeleton-bound protease in situ, i.e. before its extraction form the cytoskeleton by 0.6 M KCl, preferentially degraded the 160-kDa component in the presence of 0.1-0.2 mM Ca2+, suggesting that a proper locational relation of this enzyme to the neurofilament structure is a prerequisite to its preference for the 160-kDa component. It appears that a factor or factors involved in such an interaction between the protease and the neurofilament were eliminated during the course of enzyme purification. The glial fibrillary acidic protein was almost insensitive to the proteases purified in the present study.  相似文献   

8.
The accumulation of neurofilaments required for postnatal radial growth of myelinated axons is controlled regionally along axons by oligodendroglia. Developmentally regulated processes previously suspected of modulating neurofilament number, including heavy neurofilament subunit (NFH) expression, attainment of mature neurofilament subunit stoichiometry, and expansion of interneurofilament spacing cannot be primary determinants of regional accumulation as we show each of these factors precede accumulation by days or weeks. Rather, we find that regional neurofilament accumulation is selectively associated with phosphorylation of a subset of Lys-Ser-Pro (KSP) motifs on heavy neurofilament subunits and medium-size neurofilament subunits (NFMs), rising >50-fold selectively in the expanding portions of optic axons. In mice deleted in NFH, substantial preservation of regional neurofilament accumulation was accompanied by increased levels of the same phosphorylated KSP epitope on NFM. Interruption of oligodendroglial signaling to axons in Shiverer mutant mice, which selectively inhibited this site-specific phosphorylation, reduced regional neurofilament accumulation without affecting other neurofilament properties or aspects of NFH phosphorylation. We conclude that phosphorylation of a specific KSP motif triggered by glia is a key aspect of the regulation of neurofilament number in axons during axonal radial growth.  相似文献   

9.
The 200,000-dalton neurofilament subunit (P200) and the 160,000-dalton (P160) and 78,000-dalton (P78) neurofilament subunits were partially purified from bovine brain. Intact neurofilaments were prepared by high- speed and sucrose-zone centrifugation. The crude neurofilament was solubilized in 8 M urea solution containing pyridine, formic acid, and 2-mercaptoethanol. The solubilized neurofilament was purified by carboxymethyl (CM) cellulose column and hydroxylapatite column chromatography. The P200 was purified as separate from P160 and P78, but the P160 and P78 subunits were copurified on CM cellulose, hydroxylapatite, Bio-Gel A150m, and Sephadex G-150 column chromatography. Electron microscopy of these purified neurofilament subunits revealed the P200 subunit as a globular structure, and the P160 and P78 subunits as a rod-shaped structure extending up to 120 nm with a 8- to 12-nm width. In the presence of 200 mM KCl, 15 mM MgCl2, and 1 mM ATP, the purified subunits assembled into long filaments. Under the assembly condition, P160 and P78 subunits elongated up to 500 nm, but the longer filament formation required the presence of P200 subunits. The filaments formed in vitro were of two types: long straight filaments and intertwined knobby-type filaments. From these results, we have suggested that P160 and P78 form the neurofilament backbone structure and P200 facilitates the assembly of the backbone units into longer filaments.  相似文献   

10.
Neurofilaments were treated with chymotrypsin or with Staphylococcus aureus V8 protease (V8 protease) and the proteolytic fragments in soluble and particulate centrifugal fractions were identified by immune blotting, using antibodies raised against the Mr = 68,000 (P68), 145,000 (P145), and 200,000 (P200) subunits. The data provide further evidence that each of the three subunits has a different disposition within the filament. A Mr = 160,000 fragment of P200, which may correspond to the side arm projections on neurofilaments, was released into solution by chymotrypsin. In contrast, the proteolytic fragments of P68 and P145 were recovered mainly in the particulate centrifugal fraction, indicating that the two subunits are more closely associated with the filament backbone. Proteolytic cleavage studies on neurofilaments that were 32P-labeled in vivo indicated that the phosphorylated domains in P200 and P145 are localized in a restricted segment of each subunit, which occurs between the chymotryptic and V8 protease cleavage sites. No 32P was associated with the bulk of chymotryptic fragments, which are found in the particulate fraction, are about 40,000 daltons in size, and derive from all three neurofilament subunits. Most of the phosphorylation sites in neurofilaments are peripherally located in the projection domain of P200, suggesting that phosphorylation may modulate interactions between neurofilaments and other neuronal components.  相似文献   

11.
The 192-kDa protein HX, a major component of serum that specifically binds to zymosan particles, was prepared from the plasma of the hagfish (Eptatretus burgeri) by ion-exchange chromatography and gel filtration. HX, present at a concentration of 0.8 mg/ml in the original plasma, was composed of two distinct subunits of 115 kDa and 77 kDa, respectively, which were linked by disulfide bonds. The protein had the same electrophoretic mobility as beta-globulin. Digestion by trypsin resulted in a specific cleavage of the 115-kDa subunit and a change in its immunoelectrophoretic mobility in the anodal direction, leaving the 77-kDa subunit intact. Treatment with SDS and urea resulted in the splitting of the 115-kDa subunits into 68-kDa and 45-kDa components, but this splitting was inhibited by pretreatment with methylamine, suggesting the presence of a thiol ester bond in the 115-kDa subunit. The amino acid composition of HX revealed a striking resemblance to that of human C3. We conclude, therefore, that the 192-kDa protein isolated in this study is analogous to C3, which plays a key role in the mammalian C system.  相似文献   

12.
A cytoskeletal extract of pure axoplasm, highly enriched with neurofilaments (ANF), was prepared from the giant axon of the squid. This ANF preparation also contained potent kinase activities which phosphorylated the Mr greater than 400,000 (high molecular weight) and Mr 220,000 squid neurofilament protein subunits. High salt (1 M) extraction of this ANF preparation solubilized most of the neurofilament proteins and kinase activities and gel filtration on an AcA 44 column separated these two components. The neurofilaments eluted in the void volume of the column while the kinase activities eluted in the 17-44-kDa range of the column. Two major kinase activities were measured in this peak of activity. One of these strongly phosphorylated the phosphate acceptor peptide Leu-Arg-Arg-Ala-Ser-Leu-Gly (Kemptide) and was completely inhibited by the selective inhibitor of cAMP-dependent kinase Thr-Thr-Tyr-Ala-Asp-Phe-Ile-Ala-Ser-Gly-Arg-Thr-Gly-Arg-Arg-Asn-Ala-Ile- NH2 (Wiptide). Since addition of cAMP did not stimulate activity, this suggested that this kinase was a free catalytic subunit of cAMP-dependent kinase associated with the neurofilaments. The second kinase activity most effectively phosphorylated alpha-casein, and this activity was not affected by Wiptide. The alpha-casein phosphorylating activity (ANF kinase) was the principal activity responsible for neurofilament protein phosphorylation, and was not inhibited by various inhibitors against second messenger regulated kinases, suggesting it was related to the casein kinase family. Four lines of evidence indicate ANF kinase was similar to casein kinase I. These were: 1) the apparent molecular weight determined by gel filtration and the chromatographic elution profile on phosphocellulose column corresponded to casein kinase I; 2) heparin, an inhibitor of casein kinase II at 2-5 micrograms/ml, stimulated both ANF kinase and purified casein kinase I at these concentrations, while CKI-7, a relatively selective inhibitor of casein kinase I, inhibited ANF kinase in a comparable dose-response fashion; 3) purified casein kinase I strongly phosphorylated both ANF protein subunits (like ANF kinase) whereas casein kinase II was relatively ineffective; and 4) tryptic peptide maps of the HMW and Mr 220,000 neurofilament proteins after phosphorylation by ANF kinase or purified casein kinase I showed similar 32P-peptide patterns.  相似文献   

13.
Monoclonal antibodies have been prepared against purified neurofilament (NF) subunits (NF68, NF150, and NF200). From 25 fusions, several hundred strongly positive antibodies have been obtained. Among them are antibodies against the specific subunits as well as antibodies recognizing common antigenic determinants. These have all been characterized according to the following properties: ELISA (enzyme-linked immunosorbant assay) testing against each subunit, immunoblots against enriched neurofilament preparation, immunoblots of cyanogen bromide or chymotrypsin-treated neurofilaments, immunofluorescence with PC12 cells, and immunohistochemistry of cerebellum. Whereas the antibodies against the NF68 and NF150 appear to react with single cyanogen bromide fragments, the antibodies against the NF200 react with multiple cyanogen bromide fragments. These data are consistent with the hypothesis that the NF200 is partially composed of several repeated structural determinants. Furthermore, all of the antibodies that react with the NF200 recognize the solubilized "sidearm" domain from limited chymotryptic digestions. The locations of the common and variable domains of the three subunits are discussed in light of these results.  相似文献   

14.
Abstract: Intact neurofilaments were isolated from bovine spinal cord white matter, washed by sedimentation in 0.1 m -NaCl, and extracted with 8 m -urea. Solubilized neurofilament triplet proteins of molecular weights approximately 68,000 (P68), 150,000 (P150), and 200,000 (P200) were purified by preparative electrophoresis, using an LKB 7900 Uniphor apparatus. The method provides for an enhanced yield of purified protein and has markedly reduced admixture of electrophoresed protein with acrylamide and associated protein contaminants. Amino acid compositions of the purified neurofilament triplet proteins are reported and compared.  相似文献   

15.
Abstract: The effects of enzymatic dephosphorylation on neurofilament interaction with two calcium-binding proteins, calpain and calmodulin, were examined. Dephosphorylation increased the rate and extent of 200-kDa neurofilament protein proteolysis by calpain. In contrast, dephosphorylation of the 160-kDa neurofilament protein did not alter the rate or extent of calpain proteolysis. However, the calpain-induced breakdown products of native and dephosphorylated 160-kDa neurofilament protein were different. Dephosphorylation did not change the proteolytic rate, extent, or breakdown products of the 68-kDa neurofilament protein. Calmodulin binding to the purified individual 160- and 200-kDa neurofilament proteins was increased following dephosphorylation. These results suggest that phosphorylation may regulate the metabolism and function of neurofilaments by modulating interactions with the calcium-activated proteins calpain and calmodulin.  相似文献   

16.
A combination of in vivo and in vitro approaches were used to characterize phosphorylation sites on the 70,000-kilodalton (kDa) subunit of neurofilaments (NF-L) and to identify the protein kinases that are likely to mediate these modifications in vivo. Neurofilament proteins in a single class of neurons, the retinal ganglion cells, were pulse-labeled in vivo by injecting mice intravitreously with [32P]orthophosphate. Radiolabeled neurofilaments were isolated after they had advanced along optic axons, and the individual subunits were separated on sodium dodecyl sulfate-polyacrylamide gels. Two-dimensional alpha-chymotryptic phosphopeptide map analysis of NF-L revealed three phosphorylation sites: an intensely labeled peptide (L-1) and two less intensely labeled peptides (L-2 and L-3). The alpha-chymotryptic peptide L-1 was identified as the 11-kDa segment containing the C terminus of NF-L. The ability of these peptides to serve as substrates for specific protein kinases were examined by incubating neurofilament preparations with [gamma-32P]ATP in the presence of purified cAMP-dependent protein kinase or appropriate activators and/or inhibitors of endogenous cytoskeleton-associated protein kinases. The heparin-sensitive, calcium- and cyclic nucleotide-independent kinase associated with the cytoskeleton selectively phosphorylated L-1 and L-3 but had little, if any, activity toward L-2. When this kinase was inhibited with heparin, cAMP addition to the neurofilament preparation stimulated the phosphorylation of L-2, and addition of the purified catalytic subunit of cAMP-dependent protein kinase induced intense labeling of L-2. At higher labeling efficiencies, the exogenous kinase also phosphorylated L-3 and several sites at which labeling was not detected in vivo; however, L-1 was not a substrate. Calcium and calmodulin added to neurofilament preparations in the presence of heparin modestly stimulated the phosphorylation of L-1 and L-3, but not L-2, and the stimulation was reversed by trifluoperazine. The selective phosphorylation of different polypeptide domains on NF-L by second messenger-dependent and -independent kinases suggests multiple functions for phosphate groups on this protein.  相似文献   

17.
Newly synthesized neurofilament proteins become highly phosphorylated within axons. Within 2 days after intravitreously injecting normal adult mice with [32P]orthophosphate, we observed that neurofilaments along the entire length of optic axons were radiolabeled by a soluble32P-carrier that was axonally transported faster than neurofilaments.32P-incorporation into neurofilament proteins synthesized at the time of injection was comparatively low and minimally influenced the labeling pattern along axons.32P-incorporation into axonal neurofilaments was considerably higher in the middle region of the optic axons. This characteristic non-uniform distribution of radiolabel remained nearly unchanged for at least 22 days. During this interval, less than 10% of the total32P-labeled neurofilaments redistributed from the optic nerve to the optic tract. By contrast, newly synthesized neurofilaments were selectively pulse-labeled in ganglion cell bodies by intravitreous injection of [35S]methionine and about 60% of this pool translocated by slow axoplasmic transport to the optic tract during the same time interval. These findings indicate that the steady-state or resident pool of neurofilaments in axons is not identical to the newly synthesized neurofilament pool, the major portion of which moves at the slowest rate of axoplasmic transport. Taken together with earlier studies, these results support the idea that, depending in part on their phosphorylation state, transported neurofilaments can interact for short or very long periods with a stationary but dynamic neurofilament lattice in axons.Special issue dedicated to Dr. Sidney Ochs.  相似文献   

18.
A1 induces neurofibrillary tangles in the perikaryon of neurons in vivo and in culture. The effect of A1 ions complexed with maltol, a plant-derived ligand of A1, on purified neurofilament preparations was studied in vitro. The binding of A1 to the arm-like projections of the high (H)- and medium (M)-molecular-weight neurofilament subunits causes a conformational change of the molecule (intrafilamentous reaction), characterized by an altered migration on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In addition, A1 compounds strongly stimulate the interaction between neurofilaments (interfilamentous reaction). The possibility that phosphate groups of the H and M sidearms are involved in binding A1 ions is discussed with regard to the migration on SDS-PAGE of dephosphorylated neurofilaments incubated with A1 compounds and the alteration by A1 ions of neurofilament phosphorylation in vitro by the associated kinase. Immunoblotting analysis of neurofilaments in cultivated neurons intoxicated with A1 compounds revealed a similar A1-dependent alteration of the neurofilament subunit conformation. This result suggest that the mechanism of A1-induced bundling of neurofilaments derived from in vitro studies might be involved in the formation of tangles in situ.  相似文献   

19.
The 70-kDa neurofilament protein subunit (NF-L) is phosphorylated in vivo on at least three sites (L1 to L3) (Sihag, R. K. and Nixon, R. A. (1989) J. Biol. Chem. 264, 457-464). The turnover of phosphate groups on NF-L during axonal transport was determined after the neurofilaments in retinal ganglion cells were phosphorylated in vivo by injecting mice intravitreally with [32P]orthophosphate. Two-dimensional phosphopeptide maps of NF-L from optic axons of mice 10 to 90 h after injection showed that radiolabel decreased faster from peptides L2 and L3 than from L1 as neurofilaments were transported. To identify phosphorylation sites on peptide L2, axonal cytoskeletons were phosphorylated by protein kinase A in the presence of heparin. After the isolated NF-L subunits were digested with alpha-chymotrypsin, 32P-peptides were separated by high performance liquid chromatography on a reverse-phase C8 column. Two-dimensional peptide mapping showed that the alpha-chymotrypsin 32P-peptide accepting most of the phosphates from protein kinase A migrated identically with the in vivo-labeled phosphopeptide L2. The sequence of this peptide (S-V-R-R-S-Y) analyzed by automated Edman degradation corresponded to amino acid residues 51-56 of the NF-L sequence. A synthetic 13-mer (S-L-S-V-R-R-S-Y-S-S-S-S-G) corresponding to amino acid residues 49-61 of NF-L was also phosphorylated by protein kinase A. alpha-Chymotryptic digestion of the 13-mer generated a peptide which contained most of the phosphates and co-migrated with the phosphopeptide L2 on two-dimensional phosphopeptide maps. Edman degradation of the phosphorylated 13-mer identified serine residue 55 which is located within a consensus phosphorylation sequence for protein kinase A as the major site of phosphorylation. Since protein kinase A-mediated phosphorylation influences intermediate filament assembly/disassembly in vitro, we propose that the phosphopeptide L2 region is a neurofilament-assembly domain and that the cycle of phosphorylation and dephosphorylation of Ser-55 on NF-L, which occurs relatively early after subunit synthesis in vivo, regulaaes a step in neurofilament assembly or initial interactions during axonal transport.  相似文献   

20.
In this article, the preparation and characterization of polyclonal rabbit antisera against the individual polypeptides of bovine neurofilament (68, 150, and 200 kilodaltons) is described. Selected antisera against the 68- and 150-kilodalton neurofilament polypeptides were specific for the corresponding antigen in homogenates of bovine, rat, and human brain as judged by immunoblots. The antisera against the 200-kilodalton neurofilament polypeptide cross-reacted to some extent with the 150-kilodalton neurofilament polypeptide, especially with the human antigen. The most specific antisera were used to develop an enzyme-linked immunosorbent assay (ELISA), and the cross-reactivities between the antisera and the different bovine and rat neurofilament polypeptides were determined. Contrary to the results in the immunoblots, the antiserum against the 200-kilodalton neurofilament polypeptide was subunit-specific, as was the 150-kilodalton antiserum. The 68-kilodalton antiserum displayed a minute cross-reactivity against bovine 150- and 200-kilodalton neurofilaments, but it cross-reacted somewhat more with the rat 150- and 200-kilodalton antigens. Even so, the subunit specificity of the antisera is high enough to enable the development of a quantitative ELISA for determination of the individual bovine or rat neurofilament polypeptides in a mixture. This study is the necessary preparation for such an assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号