首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetic improvement of biomining bacteria including Acidithiobacillus caldus could facilitate the bioleaching process of sulfur-containing minerals. However, the available vectors for use in A. caldus are very scanty and limited to relatively large broad-host-range IncQ plasmids. In this study, a set of small, mobilizable plasmid vectors (pBBR1MCS-6, pMSD1 and pMSD2) were constructed based on plasmid pBBR1MCS-2, which does not belong to the IncQ, IncW, or IncP groups. The function of the tac promoter on 5.8-kb pMSD2 was determined by inserting a kanamycin-resistant reporter gene. The resulting recombinant pMSD2-Km was successfully transferred by conjugation into A. caldus MTH-04 with transfer frequency of 1.38 ± 0.64 × 10?5. The stability and plasmid copy number of pMSD2-Km in A. caldus MTH-04 were 75 ± 2.7% and 5–6 copies per cell, respectively. By inserting an arsABC operon into pMSD2, an arsenic-resistant recombinant pMSD2-As was constructed and transferred into A. caldus MTH-04 by conjugation. The arsenic tolerance of A. caldus MTH-04 containing pMSD2-As was obviously increased up to 45 mM of NaAsO2. These vectors could be applied in genetic improvement of A. caldus as well as other bioleaching bacteria.  相似文献   

2.
Characterization of the biological roles of proteins is essential for functional genomics of pseudomonads. Heterologous proteins overproduced in Escherichia coli frequently fail to exhibit biological function. To circumvent this problem, vector pMEKm12 was constructed and used to overexpress proteins in Pseudomonas. The vector contains the pRO1600 replication origin, the maltose-binding protein (MBP) fusion system, and an inducible tac promoter. The pMEKm12 was successfully used to overexpress the syringomycin synthetase SyrB1 protein fused to MBP in Pseudomonas syringae pv. syringae. Furthermore, expression of the MBP-SyrB1 protein in the syrB1 mutant BR132A1 resulted in the restoration of syringomycin production. This vector will facilitate confirmation of the biochemical roles of nonribosomal peptide synthetase genes in Pseudomonas syringae, and studies of gene function from a wide spectrum of pseudomonads.  相似文献   

3.
A host vector system in Gluconobacter oxydans was constructed. An Acetobacter-Escherichia coli shuttle vector was introduced with the efficiency of 10(4) transformants/microg of DNA. Next, aiming for a self-cloning vector, we found a cryptic plasmid (which we named pAG5) of 5648 bp in G. oxydans strain IFO 3171, and sequenced the nucleotides. The plasmid seemed to have only one open reading flame (ORF) for a possible replication protein. Shuttle vectors of Gluconobacter-E. coli were constructed with the plasmid pAG5 and an E. coli vector, pUC18.  相似文献   

4.
Abstract Derivatives of an IncW incompatibility plasmid with a low copy number are described which can be used for gene cloning or for analysing gene expression in conditions similar to those found in the host chromosome. Gene expression can be monitored after construction of operon or protein fusions with the lacZYA operon and measurement in Escherichia coli of the β-galactosidase activity.  相似文献   

5.
Gluconobacter spp. possess the enzymic potential for two pathways of direct glucose oxidation. It has been proposed that the major part of glucose is oxidized to gluconate via NADP-dependent glucose dehydrogenase and that reoxidation of NADPH under these conditions proceeds via recycling of gluconate through ketogluconates. This hypothesis was tested in experiments in which Gluconobacter oxydans ATCC 621-H was grown in glucose-yeast extract medium containing [14C]2-ketogluconate. As expected, glucose was almost quantitatively oxidized to gluconate, without further accumulation of 2- and 5-ketogluconate. Interestingly, the total amount of neither [14C]2-ketogluconate nor [14C]gluconate did change significantly during this oxidation phase, indicating that recycling of gluconate through ketogluconates did not occur. An analysis of enzyme activities in cell-free extracts of glucose-grown cells of G. oxydans ATCC 621-H showed that the membrane-bound glucose dehydrogenase was far more active than the NADP-linked glucose dehydrogenase. The activity of the latter enzyme constituted only 10–15% of that of quinoprotein glucose dehydrogenase and was far too low to match the in vivo rates of gluconate production in batch cultures of G. oxydans. It is concluded that under these conditions glucose is mainly oxidized to gluconate via the membrane-bound glucose dehydrogenase. Implications of these results for the regulation of ketogluconate formation are discussed.Abbreviations DCPIP 2,6-dichlorophenolindophenol - PMS phenazine methosulphate - PQQ pyrrolo-quinoline quinone  相似文献   

6.
高效可溶性重组蛋白表达载体的构建   总被引:3,自引:0,他引:3  
本研究构建了两种高效表达可溶性重组蛋白的原核表达载体。一种载体由HisSUMO序列与pET30a(+)载体连接而成(命名为HisSUMO Express),表达的融合蛋白用Ni-NTA纯化,用SUMO蛋白酶I切割后可获得不留任何残基的重组蛋白。SUMO-蛋白酶I价格较贵,为减少表达蛋白的成本,第二种载体即在His-SUMO和目的序列之间加入羟胺切割位点(命名为HisSUMO Economic)。在HisSUMO Economic中表达的融合蛋白用Ni-NTA纯化,羟胺液切割后可获得仅留一个甘氨酸残基的重组蛋白。以在常规表达载体中难以表达的鼠源成纤维细胞生长因子-21(mFGF-21)为例,经葡萄糖消耗实验检测其活性,验证两种表达载体的效果。结果表明mFGF-21在两种载体中均获得了高效表达,融合蛋白占菌体总蛋白的40%以上,Ni-NTA纯化后的融合蛋白分别利用羟胺切割液和SUMO蛋白酶I切割,纯化的mFGF-21成熟蛋白回收量约为54mg/L,回收率约为6%。经两种载体表达后的mFGF-21蛋白均具有生物学活性,可促进脂肪细胞消耗葡萄糖,为进一步研究提供了基础。  相似文献   

7.
【目的】构建串联亲和纯化原核表达载体,用于研究细菌中(生理状态或接近生理条件下的)蛋白-蛋白相互作用。【方法】设计并合成两条串联亲和标签序列,分别可以在靶蛋白N端和C端融合Protein G和链亲和素结合肽(Streptavidin binding peptide,SBP)标签;以pUC18载体为骨架,去除原有的阻遏蛋白基因,构建组成型表达载体pNTAP和pCTAP。【结果】成功构建N端和C端标签表达载体pNTAP和pCTAP,它们在大肠杆菌(Escherichia coli)BL21(DE3)、肠出血性大肠杆菌O157:H7和痢疾杆菌福氏5型M90T菌株中都可以实现表达。【结论】本实验构建的两个串联亲和纯化表达载体可以在部分革兰氏阴性细菌中表达,为研究细菌内蛋白-蛋白相互作用及致病菌毒力蛋白的作用机制奠定了基础。  相似文献   

8.
《Gene》1996,172(1):163-164
We report the construction of two cloning vectors that are based on the Pseudomonas-Escherichia shuttle vector, pUCP19. The new vectors, pUCPKS and pUCPSK, contain a significantly expanded multiple cloning site (MCS) with an adjacent T7 promoter sequence. In conjunction with specifically engineered host strains encoding an inducible T7 RNA polymerase, these vectors allow the controlled production of plasmid-encoded proteins in both Escherichia coli and Pseudomonas aeruginosa to analyse the spectrum of products encoded by cloned segments of DNA. The usefulness of these vectors was demonstrated by expressing the chloramphenicol acetyltransferase (CAT)-encoding gene.  相似文献   

9.
10.
We report the construction of two Gateway fungal expression vectors pCBGW and pGWBF. The pCBGW was generated by introducing an expression cassette, which consists of a Gateway recombinant cassette (attR1-Cmr-ccdB-attR2) under the control of fungal promoter PgpdA and a terminator TtrpC, into the multiple cloning site of fungal vector pCB1004. The pGWBF is a binary vector, which was generated from the plant expression vector pGWB2 by replacing the CaMV35S promoter with PgpdA. The pGWBF can be transformed into fungi efficiently with Agrobacterium-mediated transformation. The applicability of two newly constructed vectors was tested by generating the destination vectors pGWBF-GFP and pCBGW-GFP and examining the expression of GFP gene in Trichoderma viride and Gibberella fujikuroi, respectively. Combining with the advantage of Gateway cloning technology, pCBGW and pGWBF will be useful in fungi for large-scale investigation of gene functions by constructing the interested gene destination/expression vectors in a high-throughput way.  相似文献   

11.
Vector‐borne diseases (VBDs) are defined as infectious diseases of humans and animals caused by pathogenic agents such as viruses, protists, bacteria, and helminths transmitted by the bite of blood‐feeding arthropod (BFA) vectors. VBDs represent a major public health threat in endemic areas, generally subtropical zones, and many are considered to be neglected diseases. Genome sequencing of some arthropod vectors as well as modern proteomic and genomic technologies are expanding our knowledge of arthropod–pathogen interactions. This review describes the proteomic approaches that have been used to investigate diverse biological questions about arthropod vectors, including the interplay between vectors and pathogens. Proteomic studies have identified proteins and biochemical pathways that may be involved in molecular crosstalk in BFA‐pathogen associations. Future work can build upon this promising start and functional analyses coupled with interactome bioassays will be carried out to investigate the role of candidate peptides and proteins in BFA‐human pathogen associations. Dissection of the host–pathogen interactome will be key to understanding the strategies and biochemical pathways used by BFAs to cope with pathogens.  相似文献   

12.
A NADP-dependent d-arabitol dehydrogenase gene was cloned from Gluconobacter oxydans CGMCC 1.110 and functionally expressed in Escherichia coli. With d-arabitol as sole carbon source, E. coli transformants grew rapidly in minimal medium, and produced d-xylulose. The enzymatic properties of the 29kDa enzyme were documented. The DNA sequence surrounding the gene suggested that it is part of an operon with several components of a sugar alcohol transporter system, and the d-arabitol dehydrogenase gene belongs to the short-chain dehydrogenase family.  相似文献   

13.
Differential protein expression profile in gastrointestinal stromal tumors   总被引:5,自引:0,他引:5  
Summary. Gastrointestinal stromal tumors (GISTs) arise from the interstitial cells of Cajal through gain of function mutations of the oncogene KIT. Imatinib offers the first effective treatment for patients with GISTs, but the therapeutic outcome strongly depends on the type of KIT mutation. We used ProteinChip technology to investigate whether GISTs with different KIT mutations express different proteins. In total, 154 proteins were significantly differentially expressed in GISTs with exon 9 KIT mutation compared to GISTs with exon 11 KIT mutation.  相似文献   

14.
sgna基因小麦高效表达载体的构建   总被引:3,自引:3,他引:0  
利用在禾谷类作物中表达效率较高的启动子Ubi对含目的基因sgna的现有载体进行了改造,并引入筛选标记基因bar;为提高目的基因的表达水平,在目的基因5′端引入了Ω和kozak序列,3′端引入了poly(A)序列,成功构建了适用于小麦的抗虫基因植物表达载体pGU4AGBar和pGBIU4AGBar,基因pGU4AGBar含有顺向连接的Ubi-sgna及Ubi-bar基因表达盒,pGBIU4AGBar含有T-DNA边界序列,并在其左右边界中间插入了含有顺向连接的CaNV35S-nptⅡ,Ubi-sgna和Ubi-bar基因表达盒,人工合成的雪花莲外源凝集素基因sgna可以编码对同翅目昆虫具有毒杀作用的蛋白。  相似文献   

15.
A series of fusion vectors containing glutathione-S-transferase (GST) were constructed by inserting GST fusion cassette of Escherichia coli vectors pGEX4T-1, -2 and -3 in corynebacterial vector pBK2. Efficient expression of GST driven by inducible tac promoter of E. coli was observed in Corynebacterium acetoacidophilum. Fusion of enhanced green fluorescent protein (EGFP) and streptokinase genes in this vector resulted in the synthesis of both the fusion proteins. The ability of this recombinant organism to produce several-fold more of the product in the extracellular medium than in the intracellular space would make this system quite attractive as far as the downstream processing of the product is concerned.  相似文献   

16.
A versatile shuttle system has been developed for genetic complementation with cloned genes of transformable and non-transformableNeisseria mutants. By random insertion of a selectable marker into the conjugativeNeisseria plasmidptetM25.2, a site within this plasmid was identified that is compatible with plasmid replication and with conjugative transfer of plasmid. Regions flanking the permissive insertion site of ptetM25.2 were cloned inEscherichia coli and served as a basis for the construction of the Hermes vectors. Hermes vectors are composed of anE. coli replicon that does not support autonomous replication inNeisseria, e.g. ColE1, p15A, orori fd, fused with a shuttle consisting of a selectable marker and a multiple cloning site flanked by the integration region of ptetM25.2. Complementation of a non-transformableNeisseria strain involves a three-step process: (i) insertion of the desired gene into a Hermes vector; (ii) transformation of Hermes into aNeisseria strain containing ptetM25.2 to create a hybrid ptetM25.2 via gene replacement by the Hermes shuttle cassette; and (iii) conjugative transfer of the hybrid ptetM25.2 into the finalNeisseria recipient. Several applications for the genetic manipulation of pathogenicNeisseriae are described.  相似文献   

17.
双价抗虫基因植物表达载体的构建   总被引:13,自引:0,他引:13  
将蝎毒基因BmKITS和几丁质酶基因chitinase2个抗虫基因采用不同的启动子ubi或35S,连到2个高效的植物表达载体pWM101和pBI101中,2个重组表达质粒分别经过限制性酶切分析和PCR鉴定,实验结果表明2个含有双价抗虫基因的植物重组表达质粒均已构建成功.  相似文献   

18.
本研究构建了四株含有氧化葡萄糖酸杆菌山梨醇脱氢酶基因的重组大肠杆菌,并初步探究SldB和SldA亚基在山梨醇脱氢酶转化甘油反应中的作用。将pET28a、pETduet与PCR扩增的目的基因连接,构建单启动子调控重组质粒pET28a-sldB、pET28a-sldA、pET28a-sldBA和双启动子调控重组质粒pETduet-sldB'-sldA'。只有含pET28a-sldBA和pETduet-sldB'-sldA'的重组菌具有转化甘油的活性,表明G.oxydans WD的山梨醇脱氢酶催化甘油脱氢需要SldB和SldA亚基的共同作用。串联基因sldBA的蛋白表达结果与双启动子控制sldB和sldA基因蛋白表达结果基本相同,表明位于sldB基因末端的sldA的RBS序列可被E.coli C43的核糖体识别。  相似文献   

19.
2-Keto-l-gulonic acid (2-KLG), the direct precursor of vitamin C, is currently produced by a two-step fermentation route from d-sorbitol. However, this route involves three bacteria, making the mix-culture system complicated and redundant. Thus, replacement of the conventional two-step fermentation process with a one-step process could be revolutionary in vitamin C industry. In this study, different combinations of five l-sorbose dehydrogenases (SDH) and two l-sorbosone dehydrogenases (SNDH) from Ketogulonicigenium vulgare WSH-001 were introduced into Gluconobacter oxydans WSH-003, an industrial strain used for the conversion of d-sorbitol to l-sorbose. The optimum combination produced 4.9 g/L of 2-KLG. In addition, 10 different linker peptides were used for the fusion expression of SDH and SNDH in G. oxydans. The best recombinant strain (G. oxydans/pGUC-k0203-GS-k0095) produced 32.4 g/L of 2-KLG after 168 h. Furthermore, biosynthesis of pyrroloquinoline quinine (PQQ), a cofactor of those dehydrogenases, was enhanced to improve 2-KLG production. With the stepwise metabolic engineering of G. oxydans, the final 2-KLG production was improved to 39.2 g/L, which was 8.0-fold higher than that obtained using independent expression of the dehydrogenases. These results bring us closer to the final one-step industrial-scale production of vitamin C.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号