首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The Golgi apparatus, the main glycosylation station of the cell, consists of a stack of discontinuous cisternae. Glycosylation enzymes are usually concentrated in one or two specific cisternae along the cis‐trans axis of the organelle. How such compartmentalized localization of enzymes is achieved and how it contributes to glycosylation are not clear. Here, we show that the Golgi matrix protein GRASP55 directs the compartmentalized localization of key enzymes involved in glycosphingolipid (GSL) biosynthesis. GRASP55 binds to these enzymes and prevents their entry into COPI‐based retrograde transport vesicles, thus concentrating them in the trans‐Golgi. In genome‐edited cells lacking GRASP55, or in cells expressing mutant enzymes without GRASP55 binding sites, these enzymes relocate to the cis‐Golgi, which affects glycosphingolipid biosynthesis by changing flux across metabolic branch points. These findings reveal a mechanism by which a matrix protein regulates polarized localization of glycosylation enzymes in the Golgi and controls competition in glycan biosynthesis.  相似文献   

2.
Acidic pH of the Golgi lumen is known to be crucial for correct glycosylation, transport and sorting of proteins and lipids during their transit through the organelle. To better understand why Golgi acidity is important for these processes, we have examined here the most pH sensitive events in N‐glycosylation by sequentially raising Golgi luminal pH with chloroquine (CQ), a weak base. We show that only a 0.2 pH unit increase (20 µM CQ) is sufficient to markedly impair terminal α(2,3)‐sialylation of an N‐glycosylated reporter protein (CEA), and to induce selective mislocalization of the corresponding α(2,3)‐sialyltransferase (ST3) into the endosomal compartments. Much higher pH increase was required to impair α(2,6)‐sialylation, or the proximal glycosylation steps such as β(1,4)‐galactosylation or acquisition of Endo H resistance, and the steady‐state localization of the key enzymes responsible for these modifications (ST6, GalT I, MANII). The overall Golgi morphology also remained unaltered, except when Golgi pH was raised close to neutral. By using transmembrane domain chimeras between the ST6 and ST3, we also show that the luminal domain of the ST6 is mainly responsible for its less pH sensitive localization in the Golgi. Collectively, these results emphasize that moderate Golgi pH alterations such as those detected in cancer cells can impair N‐glycosylation by inducing selective mislocalization of only certain Golgi glycosyltransferases. J. Cell. Physiol. 220: 144–154, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
The Golgi apparatus is the main glycosylation and sorting station along the secretory pathway. Its structure includes the Golgi vesicles, which are depleted of anterograde cargo, and also of at least some Golgi‐resident proteins. The role of Golgi vesicles remains unclear. Here, we show that Golgi vesicles are enriched in the Qb‐SNAREs GS27 (membrin) and GS28 (GOS‐28), and depleted of nucleotide sugar transporters. A block of intra‐Golgi transport leads to accumulation of Golgi vesicles and partitioning of GS27 and GS28 into these vesicles. Conversely, active intra‐Golgi transport induces fusion of these vesicles with the Golgi cisternae, delivering GS27 and GS28 to these cisternae. In an in vitro assay based on a donor compartment that lacks UDP‐galactose translocase (a sugar transporter), the segregation of Golgi vesicles from isolated Golgi membranes inhibits intra‐Golgi transport; re‐addition of isolated Golgi vesicles devoid of UDP‐galactose translocase obtained from normal cells restores intra‐Golgi transport. We conclude that this activity is due to the presence of GS27 and GS28 in the Golgi vesicles, rather than the sugar transporter. Furthermore, there is an inverse correlation between the number of Golgi vesicles and the number of inter‐cisternal connections under different experimental conditions. Finally, a rapid block of the formation of vesicles via COPI through degradation of ϵCOP accelerates the cis‐to‐trans delivery of VSVG. These data suggest that Golgi vesicles, presumably with COPI, serve to inhibit intra‐Golgi transport by the extraction of GS27 and GS28 from the Golgi cisternae, which blocks the formation of inter‐cisternal connections .  相似文献   

4.
The Golgi apparatus (GA) is a dynamic store of Ca2+ that can be released into the cell cytosol. It can thus participate in the regulation of the Ca2+ concentration in the cytosol ([Ca2+]cyt), which might be critical for intra‐Golgi transport. Secretory pathway Ca2+‐ATPase pump type 1 (SPCA1) is important in Golgi homeostasis of Ca2+. The subcellular localization of SPCA1 appears to be GA specific, although its precise location within the GA is not known. Here, we show that SPCA1 is mostly excluded from the cores of the Golgi cisternae and is instead located mainly on the lateral rims of Golgi stacks, in tubular noncompact zones that interconnect different Golgi stacks, and within tubular parts of the trans Golgi network, suggesting a role in regulation of the local [Ca2+]cyt that is crucial for membrane fusion. SPCA1 knockdown by RNA interference induces GA fragmentation. These Golgi fragments lack the cis‐most and trans‐most cisternae and remain within the perinuclear region. This SPCA1 knockdown inhibits exit of vesicular stomatitis virus G‐protein from the GA and delays retrograde redistribution of the GA glycosylation enzymes into the endoplasmic reticulum caused by brefeldin A; however, exit of these enzymes from the endoplasmic reticulum is not affected. Thus, correct SPCA1 functioning is crucial to intra‐Golgi transport and maintenance of the Golgi ribbon.  相似文献   

5.
The Golgi complex is a central hub for intracellular protein trafficking and glycosylation. Steady-state localization of glycosylation enzymes is achieved by a combination of mechanisms involving retention and recycling, but the machinery governing these mechanisms is poorly understood. Herein we show that the Golgi-associated retrograde protein (GARP) complex is a critical component of this machinery. Using multiple human cell lines, we show that depletion of GARP subunits impairs Golgi modification of N- and O-glycans and reduces the stability of glycoproteins and Golgi enzymes. Moreover, GARP-knockout (KO) cells exhibit reduced retention of glycosylation enzymes in the Golgi. A RUSH assay shows that, in GARP-KO cells, the enzyme beta-1,4-galactosyltransferase 1 is not retained at the Golgi complex but instead is missorted to the endolysosomal system. We propose that the endosomal system is part of the trafficking itinerary of Golgi enzymes or their recycling adaptors and that the GARP complex is essential for recycling and stabilization of the Golgi glycosylation machinery.  相似文献   

6.
Cell surface lectin staining, examination of Golgi glycosyltransferases stability and localization, and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analysis were employed to investigate conserved oligomeric Golgi (COG)-dependent glycosylation defects in HeLa cells. Both Griffonia simplicifolia lectin-II and Galanthus nivalus lectins were specifically bound to the plasma membrane glycoconjugates of COG-depleted cells, indicating defects in activity of medial- and trans-Golgi-localized enzymes. In response to siRNA-induced depletion of COG complex subunits, several key components of Golgi glycosylation machinery, including MAN2A1, MGAT1, B4GALT1 and ST6GAL1, were severely mislocalized. MALDI-TOF analysis of total N-linked glycoconjugates indicated a decrease in the relative amount of sialylated glycans in both COG3 KD and COG4 KD cells. In agreement to a proposed role of the COG complex in retrograde membrane trafficking, all types of COG-depleted HeLa cells were deficient in the Brefeldin A- and Sar1 DN-induced redistribution of Golgi resident glycosyltransferases to the endoplasmic reticulum. The retrograde trafficking of medial- and trans-Golgi-localized glycosylation enzymes was affected to a larger extent, strongly indicating that the COG complex regulates the intra-Golgi protein movement. COG complex-deficient cells were not defective in Golgi re-assembly after the Brefeldin A washout, confirming specificity in the retrograde trafficking block. The lobe B COG subcomplex subunits COG6 and COG8 were localized on trafficking intermediates that carry Golgi glycosyltransferases, indicating that the COG complex is directly involved in trafficking and maintenance of Golgi glycosylation machinery.  相似文献   

7.
The cytosolic coat-protein complex COP-I interacts with cytoplasmic 'retrieval' signals present in membrane proteins that cycle between the endoplasmic reticulum (ER) and the Golgi complex, and is required for both anterograde and retrograde transport in the secretory pathway. Here we study the role of COP-I in Golgi-to-ER transport of several distinct marker molecules. Microinjection of anti-COP-I antibodies inhibits retrieval of the lectin-like molecule ERGIC-53 and of the KDEL receptor from the Golgi to the ER. Transport to the ER of protein toxins, which contain a sequence that is recognized by the KDEL receptor, is also inhibited. In contrast, microinjection of anti-COP-I antibodies or expression of a GTP-restricted Arf-1 mutant does not interfere with Golgi-to-ER transport of Shiga toxin/Shiga-like toxin-1 or with the apparent recycling to the ER of Golgi-resident glycosylation enzymes. Overexpression of a GDP-restricted mutant of Rab6 blocks transport to the ER of Shiga toxin/Shiga-like toxin-1 and glycosylation enzymes, but not of ERGIC-53, the KDEL receptor or KDEL-containing toxins. These data indicate the existence of at least two distinct pathways for Golgi-to-ER transport, one COP-I dependent and the other COP-I independent. The COP-I-independent pathway is specifically regulated by Rab6 and is used by Golgi glycosylation enzymes and Shiga toxin/Shiga-like toxin-1.  相似文献   

8.
The central organelle within the secretory pathway is the Golgi apparatus, a collection of flattened membranes organized into stacks. The cisternal maturation model of intra-Golgi transport depicts Golgi cisternae that mature from cis to medial to trans by receiving resident proteins, such as glycosylation enzymes via retrograde vesicle-mediated recycling. The conserved oligomeric Golgi (COG) complex, a multi-subunit tethering complex of the complexes associated with tethering containing helical rods family, organizes vesicle targeting during intra-Golgi retrograde transport. The COG complex, both physically and functionally, interacts with all classes of molecules maintaining intra-Golgi trafficking, namely SNAREs, SNARE-interacting proteins, Rabs, coiled-coil tethers, vesicular coats, and molecular motors. In this report, we will review the current state of the COG interactome and analyze possible scenarios for the molecular mechanism of the COG orchestrated vesicle targeting, which plays a central role in maintaining glycosylation homeostasis in all eukaryotic cells.  相似文献   

9.
Secretory proteins exit the ER in transport vesicles that fuse to form vesicular tubular clusters (VTCs) which move along microtubule tracks to the Golgi apparatus. Using the well-characterized in vitro approach to study the properties of Golgi membranes, we determined whether the Golgi enzyme NAGT I is transported to ER/Golgi intermediates. Secretory cargo was arrested at distinct steps of the secretory pathway of a glycosylation mutant cell line, and in vitro complementation of the glycosylation defect was determined. Complementation yield increased after ER exit of secretory cargo and was optimal when transport was blocked at an ER/Golgi intermediate step. The rapid drop of the complementation yield as secretory cargo progresses into the stack suggests that Golgi enzymes are preferentially targeted to ER/Golgi intermediates and not to membranes of the Golgi stack. Two mechanisms for in vitro complementation could be distinguished due to their different sensitivities to brefeldin A (BFA). Transport occurred either by direct fusion of preexisting transport intermediates with ER/Golgi intermediates, or it occurred as a BFA-sensitive and most likely COP I-mediated step. Direct fusion of ER/Golgi intermediates with cisternal membranes of the Golgi stack was not observed under these conditions.  相似文献   

10.
The conserved oligomeric Golgi (COG) complex co-ordinates retrograde vesicle transport within the Golgi. These vesicles maintain the distribution of glycosylation enzymes between the Golgi's cisternae, and therefore COG is intimately involved in glycosylation homeostasis. Recent years have greatly enhanced our knowledge of COG's composition, protein interactions, cellular function and most recently also its structure. The emergence of COG-dependent human glycosylation disorders gives particular relevance to these advances. The structural data have firmly placed COG in the family of multi-subunit tethering complexes that it shares with the exocyst, Dsl1 and Golgi-associated retrograde protein (GARP) complexes. Here, we review our knowledge of COG's involvement in vesicle tethering at the Golgi. In particular, we consider what this knowledge may add to our molecular understanding of vesicle tethering and how it impacts on the fine tuning of Golgi function, most notably glycosylation.  相似文献   

11.
Opat AS  van Vliet C  Gleeson PA 《Biochimie》2001,83(8):763-773
The localisation of glycosylation enzymes within the Golgi apparatus is fundamental to the regulation of glycoprotein and glycolipid biosynthesis. Regions responsible for specifying Golgi localisation have been identified in numerous Golgi resident enzymes. The transmembrane domain of Golgi glycosyltransferases provides a dominant localisation signal and in many cases there are also major contributions from the lumenal domain. The mechanism by which these targeting domains function in maintaining an asymmetric distribution of Golgi resident glycosylation enzymes has been intensely debated in recent years. It is now clear that the targeting of Golgi resident enzymes is intimately associated with the organisation of Golgi membranes and the control of protein and lipid traffic in both anterograde and retrograde directions. Here we discuss the recent advances into how Golgi targeting signals of glycosylation enzymes function, and propose a model for maintaining the steady-state localisation of Golgi glycosyltransferases.  相似文献   

12.
We used multiple approaches to investigate the coordination of trans and medial Rab proteins in the regulation of intra‐Golgi retrograde trafficking. We reasoned that medially located Rab33b might act downstream of the trans Golgi Rab, Rab6, in regulating intra‐Golgi retrograde trafficking. We found that knockdown of Rab33b, like Rab6, suppressed conserved oligomeric Golgi (COG) complex‐ or Zeste White 10 (ZW10)‐depletion induced disruption of the Golgi ribbon in HeLa cells. Moreover, efficient GTP‐restricted Rab6 induced relocation of Golgi enzymes to the endoplasmic reticulum (ER) was Rab33b‐dependent, but not vice versa, suggesting that the two Rabs act sequentially in an intra‐Golgi Rab cascade. In support of this hypothesis, we found that overexpression of GTP‐Rab33b induced the dissociation of Rab6 from Golgi membranes in vivo. In addition, the transport of Shiga‐like toxin B fragment (SLTB) from the trans to cis Golgi and ER required Rab33b. Surprisingly, depletion of Rab33b had little, if any, immediate effect on cell growth and multiplication. Furthermore, anterograde trafficking of tsO45G protein through the Golgi apparatus was normal. We suggest that the Rab33b/Rab6 regulated intra‐Golgi retrograde trafficking pathway must coexist with other Golgi trafficking pathways. In conclusion, we provide the first evidence that Rab33b and Rab6 act to coordinate a major intra‐Golgi retrograde trafficking pathway. This coordination may have parallels with Rab conversion/cascade events that regulate endosome, phagosome and exocytic processes.  相似文献   

13.
Lipids and lipid-modifying enzymes play a key role in the biogenesis, maintenance and fission of transport carriers in the secretory and endocytic pathways. In the present study we demonstrate that phosphatidic acid generated by phospholipase D2 (PLD2) is involved in the formation of Golgi tubules. The main evidence to support this is: 1) inhibitors of phosphatidic acid formation and PLD2 depletion inhibit the formation of tubules containing resident enzymes and regulators of intra-Golgi transport in a low temperature (15°C) model of Golgi tubulation but do not affect brefeldin A-induced tubules, 2) inhibition of PLD2 enzymatic activity and PLD2 depletion in cells cultured under physiological conditions (37°C) induce the formation of tubules specifically containing Golgi matrix proteins, and, 3) over-expression of PLD2 induces the formation of a tubular network. In addition, it was found that the generation of this lipid by the isoenzyme is necessary for ArfGAP1 recruitment to Golgi membranes. These results suggest that both proteins are involved in the molecular mechanisms which drive the formation of different types of Golgi tubules.  相似文献   

14.
Vesicle transport sorts proteins between compartments and is thereby responsible for generating the non‐uniform protein distribution along the eukaryotic secretory and endocytic pathways. The mechanistic details of specific vesicle targeting are not yet well characterized at the molecular level. We have developed a cell‐free assay that reconstitutes vesicle targeting utilizing the recycling of resident enzymes within the Golgi apparatus. The assay has physiological properties, and could be used to show that the two lobes of the conserved oligomeric Golgi tethering complex play antagonistic roles in trans‐Golgi vesicle targeting. Moreover, we can show that the assay is sensitive to several different congenital defects that disrupt Golgi function and therefore cause glycosylation disorders. Consequently, this assay will allow mechanistic insight into the targeting step of vesicle transport at the Golgi, and could also be useful for characterizing some novel cases of congenital glycosylation disorders.   相似文献   

15.
A well-characterized cell-free assay that reconstitutes Golgi transport is shown to require physically fragmented Golgi fractions for maximal activity. A Golgi fraction containing large, highly stacked flattened cisternae associated with coatomer-rich components was inactive in the intra-Golgi transport assay. In contrast, more fragmented hepatic Golgi fractions of lower purity were highly active in this assay. Control experiments ruled out defects in glycosylation, the presence of excess coatomer or inhibitory factors, as well as the lack or consumption of limiting diffusible factors as responsible for the lower activity of intact Golgi fractions. Neither Brefeldin A treatment, preincubation with KCl (that completely removed associated coatomer) or preincubation with imidazole buffers that caused unstacking, activated stacked fractions for transport. Only physical fragmentation promoted recovery of Golgi fractions active for transport in vitro. Rate-zonal centrifugation partially separated smaller transport-active Golgi fragments with a unique v-SNARE pattern, away from the bulk of Golgi-derived elements identified by their morphology and content of Golgi marker enzymes (N-acetyl glucosaminyl and galactosyl transferase activities). These fragments released during activation likely represent intra-Golgi continuities involved in maintaining the dynamic redistribution of resident enzymes during rapid anterograde transport of secretory cargo through the Golgi in vivo.  相似文献   

16.
The well-characterized cell-free assay measuring protein transport between compartments of the Golgi [Balch, W. E., Dunphy, W. G., Braell, W. A., & Rothman, J. E. (1984) Cell 39, 405-416] utilizes glycosylation of a glycoprotein to mark movement of that protein from one Golgi compartment to the next. Glycosylation had been thought to occur immediately after vesicles carrying the glycoprotein fuse with their transport target. Therefore, the kinetics of glycosylation were taken to reflect the kinetics of vesicle fusion. We previously isolated and raised monoclonal antibodies against a protein (the prefusion operating protein, POP) which is required in this assay at a step after vesicles have apparently been formed and interacted with the target membranes, but long before glycosylation takes place. This was therefore presumed to be a reaction involving targeted but unfused vesicles. Here we report that POP is identical to uridine monophosphokinase, as revealed by molecular cloning. We show that POP is not active in transport per se but instead enhances the glycosylation used to mark transport. This indicated that, contrary to previous assumptions, glycosylation might lag significantly behind vesicle fusion. We directly show this to be true. This alters the interpretation of several earlier studies. In particular, the previously reported existence of a late, prefusion intermediate, the "NEM-resistant intermediate", can be seen to be due to effects on glycosylation and not indicative of true fusion events.  相似文献   

17.
Monoclonal antibodies (mAbs) are one of the most important products of the biopharmaceutical industry. Their therapeutic efficacy depends on the post-translational process of glycosylation, which is influenced by manufacturing process conditions. Herein, we present a dynamic mathematical model for mAb glycosylation that considers cisternal maturation by approximating the Golgi apparatus to a plug flow reactor and by including recycling of Golgi-resident proteins (glycosylation enzymes and transport proteins [TPs]). The glycosylation reaction rate expressions were derived based on the reported kinetic mechanisms for each enzyme, and transport of nucleotide sugar donors [NSDs] from the cytosol to the Golgi lumen was modeled to serve as a link between glycosylation and cellular metabolism. Optimization-based methodologies were developed for estimating unknown enzyme and TP concentration profile parameters. The resulting model is capable of reproducing glycosylation profiles of commercial mAbs. It can further reproduce the effect gene silencing of the FucT glycosylation enzyme and cytosolic NSD depletion have on the mAb oligosaccharide profile. All novel elements of our model are based on biological evidence and generate more accurate results than previous reports. We therefore believe that the improvements contribute to a more detailed representation of the N-linked glycosylation process. The overall results show the potential of our model toward evaluating cell engineering strategies that yield desired glycosylation profiles. Additionally, when coupled to cellular metabolism, this model could be used to assess the effect of process conditions on glycosylation and aid in the design, control, and optimization of biopharmaceutical manufacturing processes.  相似文献   

18.
The Golgi plays a fundamental role in posttranslational glycosylation, transport, and sorting of proteins. The mechanism of protein transport through the Golgi has been seen as controversial in recent years. During the characterization of N-glycosylation-defective mutants (ngd) previously isolated by this laboratory, it was found that ngd20 is allelic to sec20. SEC20 was reported to be required for transport from endoplasmic reticulum to Golgi, but its precise function remains to be determined. We show now that SEC20 is also required for N- and O-glycosylation in the Golgi but not in the ER, in a cargo-specific manner, and that the glycosylation defect does not correlate with the secretory defect. By pulse-chase labeling experiments in combination with mannose linkage-specific antibodies, invertase and carboxypeptidase were found to be efficiently secreted to their final compartment, even upon shift to the nonpermissive temperature, while glycosylation in the Golgi was severely impaired. Using microsomal membranes isolated from ngd20, we found that mannosyl transfer from GDP-Man to various mannose-oligosaccharides, indicative for Golgi mannosylation, was strongly diminished. Analysis of the carbohydrate component of chitinase, an exclusively O-mannosylated protein, or of the bulk mannoprotein indicates that O-mannosylation is also reduced. The results demonstrate that in addition to secretion SEC20 also affects glycosylation in the Golgi, presumably because it exerts a more general role in maintenance and function of the Golgi compartments.  相似文献   

19.
The fidelity of Golgi glycosylation is, in part, ensured by compartmentalization of enzymes within the stack. The COPI adaptor GOLPH3 has been shown to interact with the cytoplasmic tails of a subset of Golgi enzymes and direct their retention. However, other mechanisms of retention, and other roles for GOLPH3, have been proposed, and a comprehensive characterization of the clientele of GOLPH3 and its paralogue GOLPH3L is lacking. GOLPH3’s role is of particular interest as it is frequently amplified in several solid tumor types. Here, we apply two orthogonal proteomic methods to identify GOLPH3+3L clients and find that they act in diverse glycosylation pathways or have other roles in the Golgi. Binding studies, bioinformatics, and a Golgi retention assay show that GOLPH3+3L bind the cytoplasmic tails of their clients through membrane-proximal positively charged residues. Furthermore, deletion of GOLPH3+3L causes multiple defects in glycosylation. Thus, GOLPH3+3L are major COPI adaptors that impinge on most, if not all, of the glycosylation pathways of the Golgi.  相似文献   

20.
Glycosylation of proteins and lipids takes place in the Golgi apparatus by the consecutive actions of functionally distinct glycosidases and glycosyltransferases. Current evidence indicates that they function as enzyme homomers and/or heteromers in the living cell. Here we investigate their organizational interplay and show that glycosyltransferase homomers are assembled in the endoplasmic reticulum. Upon transport to the Golgi, the majority of homomers are disassembled to allow the formation of enzyme heteromers between sequentially acting medial-Golgi enzymes GnT-I and GnT-II or trans-Golgi enzymes GalT-I and ST6Gal-I. This transition is driven by the acidic Golgi environment, as it was markedly inhibited by raising Golgi luminal pH with chloroquine. Our FRAP (fluorescence recovery after photobleaching) measurements showed that the complexes remain mobile Golgi membrane constituents that can relocate to the endoplasmic reticulum or to the scattered Golgi mini-stacks upon brefeldin A or nocodazole treatment, respectively. During this relocation, heteromers undergo a reverse transition back to enzyme homomers. These data unveil an unprecedented organizational interplay between Golgi N-glycosyltransferases that involves dynamic and organelle microenvironment-driven transitions between enzyme homomers and heteromers during their trafficking within the early secretory compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号