首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Arabidopsis thaliana ARAKIN (ATMEKK1) gene shows strong homology to members of the (MAP) mitogen-activated protein kinase family, and was previously shown to functionally complement a mating defect in Saccharomyces cerevisiae at the level of the MEKK kinase ste11. The yeast STE11 is an integral component of two MAP kinase cascades: the mating pheromone pathway and the HOG (high osmolarity glycerol response) pathway. The HOG signal transduction pathway is activated by osmotic stress and causes increased glycerol synthesis. Here, we first demonstrate that ATMEKK1 encodes a protein with kinase activity, examine its properties in yeast MAP kinase cascades, then examine its expression under stress in A. thaliana. Yeast cells expressing the A. thaliana ATMEKK1 survive and grow under high salt (NaCl) stress, conditions that kill wild-type cells. Enhanced glycerol production, observed in non-stressed cells expressing ATMEKK1 is the probable cause of yeast survival. Downstream components of the HOG response pathway, HOG1 and PBS2, are required for ATMEKK1-mediated yeast survival. Because ATMEKK1 functionally complements the sho1/ssk2/ssk22 triple mutant, it appears to function at the level of the MEKK kinase step of the HOG response pathway. In A. thaliana, ATMEKK1 expression is rapidly (within 5 min) induced by osmotic (NaCl) stress. This is the same time frame for osmoticum-induced effects on the electrical properties of A. thaliana cells, both an immediate response and adaptation. Therefore, we propose that the A. thaliana ATMEKK1 may be a part of the signal transduction pathway involved in osmotic stress.  相似文献   

2.
Cellular signalling networks integrate environmental stimuli with the information on cellular status. These networks must be robust against stochastic fluctuations in stimuli as well as in the amounts of signalling components. Here, we challenge the yeast HOG signal‐transduction pathway with systematic perturbations in components’ expression levels under various external conditions in search for nodes of fragility. We observe a substantially higher frequency of fragile nodes in this signal‐transduction pathway than that has been observed for other cellular processes. These fragilities disperse without any clear pattern over biochemical functions or location in pathway topology and they are largely independent of pathway activation by external stimuli. However, the strongest toxicities are caused by pathway hyperactivation. In silico analysis highlights the impact of model structure on in silico robustness, and suggests complex formation and scaffolding as important contributors to the observed fragility patterns. Thus, in vivo robustness data can be used to discriminate and improve mathematical models.  相似文献   

3.
Regulation of the osmoregulatory HOG MAPK cascade in yeast   总被引:16,自引:0,他引:16  
The budding yeast Saccharomyces cerevisiae has at least five signal pathways containing a MAP kinase (MAPK) cascade. The high osmolarity glycerol (HOG) MAPK pathway is essential for yeast survival in high osmolarity environment. This mini-review surveys recent developments in regulation of the HOG pathway with specific emphasis on the roles of protein phosphatases and protein subcellular localization. The Hog1 MAPK in the HOG pathway is negatively regulated jointly by the protein tyrosine phosphatases Ptp2/Ptp3 and the type 2 protein phosphatases Ptc1/Ptc2/Ptc3. Specificities of these phosphatases are determined by docking interactions as well as their cellular localizations. The subcellular localizations of the osmosensors (Sln1 and Sho1), kinases (Pbs2, Hog1), and phosphatases in the HOG pathway are intricately regulated to achieve their specific functions.  相似文献   

4.
Current progress highlights the role of the yeast cell wall as a highly dynamic structure that responds to many environmental stresses. Here, we show that hyperosmotic shock transiently activates the PKC signaling pathway, a response that requires previous activation of the HOG pathway. Phosphorylation of Slt2p under such conditions is related to changes in the glycerol turnover and is mostly Mid2p dependent, suggesting that changes in cell turgor, mediated by intracellular accumulation of glycerol, are sensed by PKC sensors to promote the cell integrity response. These observations, together with previous results, suggest that yeast cells respond to changes in cellular turgor by remodeling their cell walls.  相似文献   

5.
The yeast Saccharomyces cerevisiae responds to osmotic stress, i.e., an increase in osmolarity of the growth medium, by enhanced production and intracellular accumulation of glycerol as a compatible solute. We have cloned a gene encoding the key enzyme of glycerol synthesis, the NADH-dependent cytosolic glycerol-3-phosphate dehydrogenase, and we named it GPD1. gpd1 delta mutants produced very little glycerol, and they were sensitive to osmotic stress. Thus, glycerol production is indeed essential for the growth of yeast cells during reduced water availability. hog1 delta mutants lacking a protein kinase involved in osmostress-induced signal transduction (the high-osmolarity glycerol response [HOG] pathway) failed to increase glycerol-3-phosphate dehydrogenase activity and mRNA levels when osmotic stress was imposed. Thus, expression of GPD1 is regulated through the HOG pathway. However, there may be Hog1-independent mechanisms mediating osmostress-induced glycerol accumulation, since a hog1 delta strain could still enhance its glycerol content, although less than the wild type. hog1 delta mutants are more sensitive to osmotic stress than isogenic gpd1 delta strains, and gpd1 delta hog1 delta double mutants are even more sensitive than either single mutant. Thus, the HOG pathway most probably has additional targets in the mechanism of adaptation to hypertonic medium.  相似文献   

6.
ASR1, a stress-induced tomato protein, protects yeast from osmotic stress   总被引:1,自引:0,他引:1  
Asr1 , a tomato gene induced by abiotic stress, belongs to a family, composed by at least three members, involved in adaptation to dry climates. To understand the mechanism by which proteins of this family seem to protect cells from water loss in plants, we expressed Asr1 in the heterologous expression system Saccharomyces cerevisiae under the control of a galactose-inducible promoter. In a mutant yeast strain deficient in one component of the stress-responsive high-osmolarity glycerol (HOG) pathway, namely the MAP kinase Hog 1, the synthesis of ASR1 protein restores growth under osmotic stress conditions such as 0.5  M NaCl and 1.2  M sorbitol. In contrast, the rescuing of this phenotype was less evident using a wild-type strain or the upstream MAP kinase kinase (Pbs2)-deficient strain. In both knock-out strains impaired in glycerol synthesis because of a dysfunctional HOG pathway, but not in wild-type, ASR1 led to the accumulation of endogenous glycerol in an osmotic stress-independent and unrestrained manner. These data suggest that ASR1 complements yeast HOG-deficient phenotypes by inducing downstream components of the HOG pathway. The results are discussed in terms of the function of ASR proteins in planta at the molecular and cellular level.  相似文献   

7.
8.
Mitogen-activated protein kinase (MAPK) cascades are frequently used signal transduction mechanisms in eukaryotes. Of the five MAPK cascades in Saccharomyces cerevisiae, the high-osmolarity glycerol response (HOG) pathway functions to sense and respond to hypertonic stress. We utilized a partial loss-of-function mutant in the HOG pathway, pbs2-3, in a high-copy suppressor screen to identify proteins that modulate growth on high-osmolarity media. Three high-copy suppressors of pbs2-3 osmosensitivity were identified: MSG5, CAK1, and TRX1. Msg5p is a dual-specificity phosphatase that was previously demonstrated to dephosphorylate MAPKs in yeast. Deletions of the putative MAPK targets of Msg5p revealed that kss1delta could suppress the osmosensitivity of pbs2-3. Kss1p is phosphorylated in response to hyperosmotic shock in a pbs2-3 strain, but not in a wild-type strain nor in a pbs2-3 strain overexpressing MSG5. Both TEC1 and FRE::lacZ expressions are activated in strains lacking a functional HOG pathway during osmotic stress in a filamentation/invasion-pathway-dependent manner. Additionally, the cellular projections formed by a pbs2-3 mutant on high osmolarity are absent in strains lacking KSS1 or STE7. These data suggest that the loss of filamentation/invasion pathway repression contributes to the HOG mutant phenotype.  相似文献   

9.
Cells usually cope with oxidative stress by activating signal transduction pathways. In the budding yeast Sacchromyces cerevisiae, the high osmolarity glycerol (HOG) pathway has long been implicated in transducing the oxidative stress‐induced signal, but the underlying mechanisms are not well defined. Based on phosphorylation of the mitogen‐activated protein kinase (MAPK) Hog1, we reveal that the signal from hydrogen peroxide (H2O2) flows through Ssk1, the response regulator of the two‐component system of the HOG pathway. Downstream signal transduction into the HOG MAPK cascade requires the MAP kinase kinase kinase (MAP3K) Ssk2 but not its paralog Ssk22 or another MAP3K Ste11 of the pathway, culminating in Hog1 phosphorylation via the MAP2K Pbs2. When overexpressed, Ssk2 is also activated in an Ssk1‐independent manner. Unlike in mammals, H2O2 does not cause endoplasmic reticulum stress, which can activate Hog1 through the conventional unfolded protein response. Hog1 activated by H2O2 is retained in the cytoplasm, but is still able to activate the cAMP‐ or stress‐responsive elements by unknown mechanisms.  相似文献   

10.
11.
Two-component signal transduction in human fungal pathogens   总被引:3,自引:0,他引:3  
Signal transduction pathways provide mechanisms for adaptation to stress conditions. One of the most studied of these pathways is the HOG1 MAP kinase pathway that in Saccharomyces cerevisiae is used to adapt cells to osmostress. The HOG1 MAPK has also been studied in Candida albicans, and more recently observations on the Hog1p functions have been described in two other human pathogens, Aspergillus fumigatus and Cryptococcus neoformans. The important, but not surprising, concept is that this pathway is used for different yet similar functions in each of these fungi, given their need to adapt to different environmental signals. Current studies of C. albicans focus upon the identification of two-component signal proteins that, in both C. albicans and S. cerevisiae, regulate the HOG1 MAPK. In C. albicans, these proteins regulate cell wall biosynthesis (and, therefore, adherence to host cells), osmotic and oxidant adaptation, white-opaque switching, morphogenesis, and virulence of the organism.  相似文献   

12.
Exposure of Saccharomyces cerevisiae to high osmotic stress evokes a number of adaptive changes that are necessary for its survival. These adaptive responses are mediated via multiple mitogen-activated protein kinase pathways, of which the high-osmolarity glycerol (HOG) pathway has been studied most extensively. Yeast strains that bear the hsp82T22I or hsp82G81S mutant alleles are osmosensitive. Interestingly, the osmosensitive phenotype is not due to inappropriate functioning of the HOG pathway, as Hog1p phosphorylation and downstream responses including glycerol accumulation are not affected. Rather, the hsp82 mutants display features that are characteristic for cell-wall mutants, i.e. resistance to Zymolyase and sensitivity to Calcofluor White. The osmosensitivity of the hsp82T22I or hsp82G81S strains is suppressed by over-expression of the Hsp90 co-chaperone Cdc37p but not by other co-chaperones. Hsp90 is shown to be required for proper adaptation to high osmolarity via a novel signal transduction pathway that operates parallel to the HOG pathway and requires Cdc37p.  相似文献   

13.
14.
The high-osmolarity glycerol (HOG) mitogen-activated protein (MAP) kinase pathway mediates adaptation to high-osmolarity stress in the yeast Saccharomyces cerevisiae. Here we investigate the function of HOG in the human opportunistic fungal pathogen Candida glabrata. C. glabrata sho1Delta (Cgsho1Delta) deletion strains from the sequenced ATCC 2001 strain display severe growth defects under hyperosmotic conditions, a phenotype not observed for yeast sho1Delta mutants. However, deletion of CgSHO1 in other genetic backgrounds fails to cause osmostress hypersensitivity, whereas cells lacking the downstream MAP kinase Pbs2 remain osmosensitive. Notably, ATCC 2001 Cgsho1Delta cells also display methylglyoxal hypersensitivity, implying the inactivity of the Sln1 branch in ATCC 2001. Genomic sequencing of CgSSK2 in different C. glabrata backgrounds demonstrates that ATCC 2001 harbors a truncated and mutated Cgssk2-1 allele, the only orthologue of yeast SSK2/SSK22 genes. Thus, the osmophenotype of ATCC 2001 is caused by a point mutation in Cgssk2-1, which debilitates the second HOG pathway branch. Functional complementation experiments unequivocally demonstrate that HOG signaling in yeast and C. glabrata share similar functions in osmostress adaptation. In contrast to yeast, however, Cgsho1Delta mutants display hypersensitivity to weak organic acids such as sorbate and benzoate. Hence, CgSho1 is also implicated in modulating weak acid tolerance, suggesting that HOG signaling in C. glabrata mediates the response to multiple stress conditions.  相似文献   

15.
Yersinia effector, YopJ, inhibits the innate immune response by blocking MAP kinase and NFkappaB signaling pathways in mammalian cells. Herein, YopJ is shown to disrupt the MAP kinase signaling pathways in Saccharomyces cerevisiae. Expression of YopJ in yeast blocks the ability of yeast to respond to alpha factor by disrupting activation of the pheromone signaling pathway upstream of the activation of the MAPK Fus3p. YopJ also blocks the high osmolarity growth (HOG) MAP kinase pathway in yeast upstream of the activation of the MAPK Hog1p. YopJ is proposed to block the MAP kinase pathways in yeast in a similar manner to the way it blocks mammalian signaling pathways, implicating that a novel, evolutionarily conserved mechanism of regulation is utilized for signal transduction by these pathways.  相似文献   

16.
17.
The Sho1 adaptor protein is an important element of one of the two upstream branches of the high-osmolarity glycerol (HOG) mitogen-activated protein (MAP) kinase pathway in Saccharomyces cerevisiae, a signal transduction cascade involved in adaptation to stress. In the present work, we describe its role in the pathogenic yeast Candida albicans by the construction of mutants altered in this gene. We report here that sho1 mutants are sensitive to oxidative stress but that Sho1 has a minor role in the transmission of the phosphorylation signal to the Hog1 MAP kinase in response to oxidative stress, which mainly occurs through a putative Sln1-Ssk1 branch of the HOG pathway. Genetic analysis revealed that double ssk1 sho1 mutants were still able to grow on high-osmolarity media and activate Hog1 in response to this stress, indicating the existence of alternative inputs of the pathway. We also demonstrate that the Cek1 MAP kinase is constitutively active in hog1 and ssk1 mutants, a phenotypic trait that correlates with their resistance to the cell wall inhibitor Congo red, and that Sho1 is essential for the activation of the Cek1 MAP kinase under different conditions that require active cell growth and/or cell wall remodeling, such as the resumption of growth upon exit from the stationary phase. sho1 mutants are also sensitive to certain cell wall interfering compounds (Congo red, calcofluor white), presenting an altered cell wall structure (as shown by the ability to aggregate), and are defective in morphogenesis on different media, such as SLAD and Spider, that stimulate hyphal growth. These results reveal a role for the Sho1 protein in linking oxidative stress, cell wall biogenesis, and morphogenesis in this important human fungal pathogen.  相似文献   

18.
19.
K P Dixon  J R Xu  N Smirnoff    N J Talbot 《The Plant cell》1999,11(10):2045-2058
The phytopathogenic fungus Magnaporthe grisea elaborates a specialized infection cell called an appressorium with which it mechanically ruptures the plant cuticle. To generate mechanical force, appressoria produce enormous hydrostatic turgor by accumulating molar concentrations of glycerol. To investigate the genetic control of cellular turgor, we analyzed the response of M. grisea to hyperosmotic stress. During acute and chronic hyperosmotic stress adaptation, M. grisea accumulates arabitol as its major compatible solute in addition to smaller quantities of glycerol. A mitogen-activated protein kinase-encoding gene OSM1 was isolated from M. grisea and shown to encode a functional homolog of HIGH-OSMOLARITY GLYCEROL1 (HOG1), which encodes a mitogen-activated protein kinase that regulates cellular turgor in yeast. A null mutation of OSM1 was generated in M. grisea by targeted gene replacement, and the resulting mutants were sensitive to osmotic stress and showed morphological defects when grown under hyperosmotic conditions. M. grisea deltaosm1 mutants showed a dramatically reduced ability to accumulate arabitol in the mycelium. Surprisingly, glycerol accumulation and turgor generation in appressoria were unaltered by the Deltaosm1 null mutation, and the mutants were fully pathogenic. This result indicates that independent signal transduction pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection. Consistent with this, exposure of M. grisea appressoria to external hyperosmotic stress induced OSM1-dependent production of arabitol.  相似文献   

20.
A central question in the area of signal transduction is why pathways utilize common components. In the budding yeast Saccharomyces cerevisiae, the HOG and filamentous growth (FG) MAPK pathways require overlapping components but are thought to be induced by different stimuli and specify distinct outputs. To better understand the regulation of the FG pathway, we examined FG in one of yeast''s native environments, the grape-producing plant Vitis vinifera. In this setting, different aspects of FG were induced in a temporal manner coupled to the nutrient cycle, which uncovered a multimodal feature of FG pathway signaling. FG pathway activity was modulated by the HOG pathway, which led to the finding that the signaling mucins Msb2p and Hkr1p, which operate at the head of the HOG pathway, differentially regulate the FG pathway. The two mucins exhibited different expression and secretion patterns, and their overproduction induced nonoverlapping sets of target genes. Moreover, Msb2p had a function in cell polarization through the adaptor protein Sho1p that Hkr1p did not. Differential MAPK activation by signaling mucins brings to light a new point of discrimination between MAPK pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号