首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Golgi stacks are often located near sites of "transitional ER" (tER), where COPII transport vesicles are produced. This juxtaposition may indicate that Golgi cisternae form at tER sites. To explore this idea, we examined two budding yeasts: Pichia pastoris, which has coherent Golgi stacks, and Saccharomyces cerevisiae, which has a dispersed Golgi. tER structures in the two yeasts were visualized using fusions between green fluorescent protein and COPII coat proteins. We also determined the localization of Sec12p, an ER membrane protein that initiates the COPII vesicle assembly pathway. In P. pastoris, Golgi stacks are adjacent to discrete tER sites that contain COPII coat proteins as well as Sec12p. This arrangement of the tER-Golgi system is independent of microtubules. In S. cerevisiae, COPII vesicles appear to be present throughout the cytoplasm and Sec12p is distributed throughout the ER, indicating that COPII vesicles bud from the entire ER network. We propose that P. pastoris has discrete tER sites and therefore generates coherent Golgi stacks, whereas S. cerevisiae has a delocalized tER and therefore generates a dispersed Golgi. These findings open the way for a molecular genetic analysis of tER sites.  相似文献   

2.
The Golgi apparatus is a central hub for both protein and lipid trafficking/sorting and is also a major site for glycosylation in the cell. This organelle employs a cohort of peripheral membrane proteins and protein complexes to keep its structural and functional organization. The conserved oligomeric Golgi (COG) complex is an evolutionary conserved peripheral membrane protein complex that is proposed to act as a retrograde vesicle tethering factor in intra-Golgi trafficking. The COG protein complex consists of eight subunits, distributed in two lobes, Lobe A (Cog1-4) and Lobe B (Cog5-8). Malfunctions in the COG complex have a significant impact on processes such as protein sorting, glycosylation, and Golgi integrity. A deletion of Lobe A COG subunits in yeasts causes severe growth defects while mutations in COG1, COG7, and COG8 in humans cause novel types of congenital disorders of glycosylation. These pathologies involve a change in structural Golgi phenotype and function. Recent results indicate that down-regulation of COG function results in the resident Golgi glycosyltransferases/glycosidases to be mislocalized or degraded.  相似文献   

3.
In mammalian cells, the ‘Golgi reassembly and stacking protein’ (GRASP) family has been implicated in Golgi stacking, but the broader functions of GRASP proteins are still unclear. The yeast Saccharomyces cerevisiae contains a single non‐essential GRASP homolog called Grh1. However, Golgi cisternae in S. cerevisiae are not organized into stacks, so a possible structural role for Grh1 has been difficult to test. Here, we examined the localization and function of Grh1 in S. cerevisiae and in the related yeast Pichia pastoris, which has stacked Golgi cisternae. In agreement with earlier studies indicating that Grh1 interacts with coat protein II (COPII) vesicle coat proteins, we find that Grh1 colocalizes with COPII at transitional endoplasmic reticulum (tER) sites in both yeasts. Deletion of P. pastoris Grh1 had no obvious effect on the structure of tER–Golgi units. To test the role of S. cerevisiae Grh1, we exploited the observation that inhibiting ER export in S. cerevisiae generates enlarged tER sites that are often associated with the cis Golgi. This tER–Golgi association was preserved in the absence of Grh1. The combined data suggest that Grh1 acts early in the secretory pathway, but is dispensable for the organization of secretory compartments.  相似文献   

4.
The Golgi apparatus was dramatically disassembled when cells were incubated in a low pH medium. The cis-Golgi disassembled quickly, extended tubules and spread to the periphery of cells within 30 min. In contrast, medial- and trans-Golgi were fragmented in significantly larger structures of smaller numbers at a slower rate and remained largely in structures distinct from the cis-Golgi. Electron microscopy revealed the complete disassembly of the Golgi stack in low pH treated cells. The effect of low pH was reversible; the Golgi apparatus reassembled to form a normal ribbon-like structure within 1–2 h after the addition of a control medium. The anterograde ER to Golgi transport and retrograde Golgi to ER transport were both reduced under low pH. Phospholipase A2 inhibitors (ONO, BEL) effectively suppressed the Golgi disassembly, suggesting that the phospholipase A2 was involved in the Golgi disassembly. Over-expression of Rab1, 2, 30, 33 and 41 also suppressed the Golgi disassembly under low pH, suggesting that they have protective role against Golgi disassembly. Low pH treatment reduced cytoplasmic pH, but not the luminal pH of the Golgi apparatus, strongly suggesting that reduction of the cytoplasmic pH triggered the Golgi disassembly. Because a lower cytoplasmic pH is induced in physiological or pathological conditions, disassembly of the Golgi apparatus and reduction of vesicular transport through the Golgi apparatus may play important roles in cell physiology and pathology. Furthermore, our findings indicated that low pH treatment can serve as an important tool to analyze the molecular mechanisms that support the structure and function of the Golgi apparatus.  相似文献   

5.
Members of the yeast p24 family, including Emp24p and Erv25p, form a heteromeric complex required for the efficient transport of selected proteins from the endoplasmic reticulum (ER) to the Golgi apparatus. The specific functions and sites of action of this complex are unknown. We show that Emp24p is directly required for efficient packaging of a lumenal cargo protein, Gas1p, into ER-derived vesicles. Emp24p and Erv25p can be directly cross-linked to Gas1p in ER-derived vesicles. Gap1p, which was not affected by emp24 mutation, was not cross-linked. These results suggest that the Emp24 complex acts as a cargo receptor in vesicle biogenesis from the ER.  相似文献   

6.
The yeast α-1,3-mannosyltransferase (Mnn1p) is localized to the Golgi by independent transmembrane and lumenal domain signals. The lumenal domain is localized to the Golgi complex when expressed as a soluble form (Mnn1-s) by exchange of its transmembrane domain for a cleavable signal sequence (Graham, T. R., and V. A. Krasnov. 1995. Mol. Biol. Cell. 6:809–824). Mutants that failed to retain the lumenal domain in the Golgi complex, called lumenal domain retention (ldr) mutants, were isolated by screening mutagenized yeast colonies for those that secreted Mnn1-s. Two genes were identified by this screen, HOG1, a gene encoding a mitogen-activated protein kinase (MAPK) that functions in the high osmolarity glycerol (HOG) pathway, and LDR1. We have found that basal signaling through the HOG pathway is required to localize Mnn1-s to the Golgi in standard osmotic conditions. Mutations in HOG1 and LDR1 also perturb localization of intact Mnn1p, resulting in its loss from early Golgi compartments and a concomitant increase of Mnn1p in later Golgi compartments.  相似文献   

7.
Two distinct p97 membrane fusion pathways are required for Golgi biogenesis: the p97/p47 and p97/p37 pathways. VCIP135 is necessary for both pathways, while its deubiquitinating activity is required only for the p97/p47 pathway. We have now identified a novel VCIP135-binding protein, WAC. WAC localizes to the Golgi as well as the nucleus. In Golgi membranes, WAC is involved in a complex containing VCIP135 and p97. WAC directly binds to VCIP135 and increases its deubiquitinating activity. siRNA experiments revealed that WAC is required for Golgi biogenesis. In an in vitro Golgi reformation assay, WAC was necessary only for p97/p47-mediated Golgi reassembly, but not for p97/p37-mediated reassembly. WAC is hence thought to function in p97/p47-mediated Golgi membrane fusion by activating the deubiquitinating function of VCIP135. We also showed that the two p97 pathways function in ER membrane fusion as well. An in vitro ER reformation assay revealed that both pathways required VCIP135 but not its deubiquitinating activity for their ER membrane fusion. This was consistent with the finding that WAC is unnecessary for p97-mediated ER membrane fusion.  相似文献   

8.
The function of the Golgi apparatus is to modify proteins and lipids synthesized in the ER and sort them to their final destination. The steady-state size and function of the Golgi apparatus is maintained through the recycling of some components back to the ER. Several lines of evidence indicate that the spatial segregation between the ER and the Golgi apparatus as well as trafficking between these two compartments require both microtubules and motors. We have cloned and characterized a new Xenopus kinesin like protein, Xklp3, a subunit of the heterotrimeric Kinesin II. By immunofluorescence it is found in the Golgi region. A more detailed analysis by EM shows that it is associated with a subset of membranes that contain the KDEL receptor and are localized between the ER and Golgi apparatus. An association of Xklp3 with the recycling compartment is further supported by a biochemical analysis and the behavior of Xklp3 in BFA-treated cells. The function of Xklp3 was analyzed by transfecting cells with a dominant-negative form lacking the motor domain. In these cells, the normal delivery of newly synthesized proteins to the Golgi apparatus is blocked. Taken together, these results indicate that Xklp3 is involved in the transport of tubular-vesicular elements between the ER and the Golgi apparatus.  相似文献   

9.
Molecular tethers have a central role in the organization of the complex membrane architecture of eukaryotic cells. p115 is a ubiquitous, essential tether involved in vesicle transport and the structural organization of the exocytic pathway. We describe two crystal structures of the N-terminal domain of p115 at 2.0 Å resolution. The p115 structures show a novel α-solenoid architecture constructed of 12 armadillo-like, tether-repeat, α-helical tripod motifs. We find that the H1 TR binds the Rab1 GTPase involved in endoplasmic reticulum to Golgi transport. Mutation of the H1 motif results in the dominant negative inhibition of endoplasmic reticulum to Golgi trafficking. We propose that the H1 helical tripod contributes to the assembly of Rab-dependent complexes responsible for the tether and SNARE-dependent fusion of membranes.  相似文献   

10.
The absence of pentose-utilizing enzymes in Saccharomyces cerevisiae is an obstacle for efficiently converting lignocellulosic materials to ethanol. In the present study, the genes coding xylose reductase (XYL1) and xylitol dehydrogenase (XYL2) from Pichia stipitis were successfully engineered into S. cerevisae. As compared to the control transformant, engineering of XYL1 and XYL2 into yeasts significantly increased the microbial biomass (8.1 vs. 3.4 g/L), xylose consumption rate (0.15 vs. 0.02 g/h) and ethanol yield (6.8 vs. 3.5 g/L) after 72 h fermentation using a xylose-based medium. Interestingly, engineering of XYL1 and XYL2 into yeasts also elevated the ethanol yield from sugarcane bagasse hydrolysate (SUBH). This study not only provides an effective approach to increase the xylose utilization by yeasts, but the results also suggest that production of ethanol by this recombinant yeasts using unconventional nutrient sources, such as components in SUBH deserves further attention in the future.  相似文献   

11.
Mirco Capitani 《FEBS letters》2009,583(23):3863-3871
The KDEL receptor is a seven-transmembrane-domain protein that was first described about 20 years ago. Its well-known function is to retrotransport chaperones from the Golgi complex to the endoplasmic reticulum. Recent studies, however, have suggested that the KDEL receptor has additional functions. Indeed, we have demonstrated that chaperone-bound KDEL receptor triggers the activation of Src family kinases on the Golgi complex. This activity is essential in the regulation of Golgi-to-plasma membrane transport. However, the identification of different KDEL receptor interactors that are inconsistent with these established functions opens the possibility of further receptor activities.  相似文献   

12.
Suga K  Hattori H  Saito A  Akagawa K 《FEBS letters》2005,579(20):4226-4234
It has been suggested that syntaxin 5 (Syx5) participates in vesicular transport. We examined the effects of Syx5 down-regulation on the morphology of the Golgi apparatus and the transport of vesicles in mammalian cells. Knockdown of the Syx5 gene resulted in Golgi fragmentation without changing the level of endoplasmic reticulum (ER)-resident proteins, other Golgi-SNAREs (soluble N-ethylmaleimide-sensitive factor-attachment protein receptors), and coatmer proteins. Strikingly, a major decrease in Syx5 expression barely affected the anterograde transport of vesicular stomatitis virus G (VSVG) protein to the plasma membrane. These results suggest that Syx5 is required for the maintenance of the Golgi structures but may not play a major role in the transport of vesicles carrying VSVG between the ER and the Golgi compartment.  相似文献   

13.
Golgi alpha-mannosidase II is essential for the efficient formation of complex-type glycosylation. Here, we demonstrate that the disruption of Golgi alpha-mannosidase II activity by swainsonine in human embryonic kidney cells is capable of inducing a novel class of hybrid-type glycosylation containing a partially processed mannose moiety. The discovery of 'Man(6)-based' hybrid-type glycans reveals a broader in vivo specificity of N-acetylglucosaminyltransferase I, further defines the arm-specific tolerance of core alpha1-6 fucosyltransferase to terminal alpha1-2 mannose residues, and suggests that disruption of Golgi alpha-mannosidase II activity is capable of inducing potentially 'non-self' structures.  相似文献   

14.
Human ATP-binding cassette transporter isoform B6 (ABCB6) has been proposed to be situated in both the inner and outer membranes of mitochondria. These inconsistent observations of submitochondrial localization have led to conflicting interpretation in view of directions of transport facilitated by ABCB6. We show here that ABCB6 has an N-terminal hydrophobic region of 220 residues that functions as a primary determinant of co-translational targeting to the endoplasmic reticulum (ER), but it does not have any known features of a mitochondrial targeting sequence. We defined the potential role of this hydrophobic extension of ABCB6 by glycosylation site mapping experiments, and demonstrated that the first hydrophobic segment acts as a type I signal-anchor sequence, which mediates N-terminal translocation through the ER membrane. Laser scanning microscopic observation revealed that ABCB6 did not co-localize with mitochondrial staining. Rather, it localized in the ER-derived and brefeldin A-sensitive perinuclear compartments, mainly in the Golgi apparatus.  相似文献   

15.
Screening of Aspergillus funiculosus for bioactive secondary metabolites produced kojic acid, which is know to have wide range of biological properties. It is very active against Gram-negative bacteria, such as Pseudomonas aeruginosa and Escherichia coli, but moderately active against yeasts and Gram-positive bacteria except Staphylococcus epidermidis. Filamentous Fungi are more sensitive to kojic acid. When it exposed to larvicidal activity on Aedes aegypti third instar larvae are more sensitive than early fourth instar larvae.  相似文献   

16.
Golgi inheritance during cell division involves Golgi disassembly but it remains unclear whether the breakdown product is dispersed vesicles, clusters of vesicles or a fused ER/Golgi network. Evidence against the fused ER/Golgi hypothesis was previously obtained from subcellular fractionation studies, but left concerns about the means used to obtain and disrupt mitotic cells. Here, we performed velocity gradient analysis on otherwise untreated cells shaken from plates 9 h after release from an S-phase block. In addition, we used digitonin and freeze/thaw permeabilization as alternatives to mechanical homogenization. Under each of these conditions, approximately 75% of the Golgi was recovered in a population of small vesicles that lacked detectable ER. We also used multilabel fluorescent microscopy with optical sectioning by deconvolution to compare the 3D metaphase staining pattern of endogenous Golgi and ER markers. Although both ER and Golgi staining were primarily diffuse, only the ER was excluded from the mitotic spindle region. Surprisingly, only 2% of the Golgi fluorescence was present as resolvable structures previously characterized as vesicle clusters. These were not present in the ER pattern. Significantly, a portion of the diffuse Golgi fluorescence, presumably representing dispersed 60-nm vesicles, underwent an apparent rapid aggregation with the larger Golgi structures upon treatments that impaired microtubule integrity. Therefore, mitotic Golgi appears to be in a dynamic equilibrium between clustered and free vesicles, and accurate partitioning may be facilitated by microtubule-based motors acting on the clusters to insure random and uniform distribution of the vesicles.  相似文献   

17.
Rer1p, a yeast Golgi membrane protein, is required for the retrieval of a set of endoplasmic reticulum (ER) membrane proteins. We present the first evidence that Rer1p directly interacts with the transmembrane domain (TMD) of Sec12p which contains a retrieval signal. A green fluorescent protein (GFP) fusion of Rer1p rapidly cycles between the Golgi and the ER. Either a lesion of coatomer or deletion of the COOH-terminal tail of Rer1p causes its mislocalization to the vacuole. The COOH-terminal Rer1p tail interacts in vitro with a coatomer complex containing alpha and gamma subunits. These findings not only give the proof that Rer1p is a novel type of retrieval receptor recognizing the TMD in the Golgi but also indicate that coatomer actively regulates the function and localization of Rer1p.  相似文献   

18.
Schwartz K  Wenger JW  Dunn B  Sherlock G 《Genetics》2012,191(2):621-632
Creating Saccharomyces yeasts capable of efficient fermentation of pentoses such as xylose remains a key challenge in the production of ethanol from lignocellulosic biomass. Metabolic engineering of industrial Saccharomyces cerevisiae strains has yielded xylose-fermenting strains, but these strains have not yet achieved industrial viability due largely to xylose fermentation being prohibitively slower than that of glucose. Recently, it has been shown that naturally occurring xylose-utilizing Saccharomyces species exist. Uncovering the genetic architecture of such strains will shed further light on xylose metabolism, suggesting additional engineering approaches or possibly even enabling the development of xylose-fermenting yeasts that are not genetically modified. We previously identified a hybrid yeast strain, the genome of which is largely Saccharomyces uvarum, which has the ability to grow on xylose as the sole carbon source. To circumvent the sterility of this hybrid strain, we developed a novel method to genetically characterize its xylose-utilization phenotype, using a tetraploid intermediate, followed by bulk segregant analysis in conjunction with high-throughput sequencing. We found that this strain's growth in xylose is governed by at least two genetic loci, within which we identified the responsible genes: one locus contains a known xylose-pathway gene, a novel homolog of the aldo-keto reductase gene GRE3, while a second locus contains a homolog of APJ1, which encodes a putative chaperone not previously connected to xylose metabolism. Our work demonstrates that the power of sequencing combined with bulk segregant analysis can also be applied to a nongenetically tractable hybrid strain that contains a complex, polygenic trait, and identifies new avenues for metabolic engineering as well as for construction of nongenetically modified xylose-fermenting strains.  相似文献   

19.
Epidermal growth factor (EGF) domain-specific O-linked N-acetylglucosamine (EOGT) is an endoplasmic reticulum (ER)-resident O-linked N-acetylglucosamine (O-GlcNAc) transferase that acts on EGF domain-containing proteins such as Notch receptors. Recently, mutations in EOGT have been reported in patients with Adams-Oliver syndrome (AOS). Here, we have characterized enzymatic properties of mouse EOGT and EOGT mutants associated with AOS. Simultaneous expression of EOGT with Notch1 EGF repeats in human embryonic kidney 293T (HEK293T) cells led to immunoreactivity with the CTD110.6 antibody in the ER. Consistent with the GlcNAc modification in the ER, the enzymatic properties of EOGT are distinct from those of Golgi-resident GlcNAc transferases; the pH optimum of EOGT ranges from 7.0 to 7.5, and the Km value for UDP N-acetylglucosamine (UDP-GlcNAc) is 25 μm. Despite the relatively low Km value for UDP-GlcNAc, EOGT-catalyzed GlcNAcylation depends on the hexosamine pathway, as revealed by the increased O-GlcNAcylation of Notch1 EGF repeats upon supplementation with hexosamine, suggesting differential regulation of the luminal UDP-GlcNAc concentration in the ER and Golgi. As compared with wild-type EOGT, O-GlcNAcylation in the ER is nearly abolished in HEK293T cells exogenously expressing EOGT variants associated with AOS. Introduction of the W207S mutation resulted in degradation of the protein via the ubiquitin-proteasome pathway, although the stability and ER localization of EOGTR377Q were not affected. Importantly, the interaction between UDP-GlcNAc and EOGTR377Q was impaired without adversely affecting the acceptor substrate interaction. These results suggest that impaired glycosyltransferase activity in mutant EOGT proteins and the consequent defective O-GlcNAcylation in the ER constitute the molecular basis for AOS.  相似文献   

20.
Membrane Dynamics in the Early Secretory Pathway   总被引:1,自引:0,他引:1  
All eukaryotes possess a secretory pathway, and the major molecular players involved in secretion are well conserved. However, the morphological manifestation of this pathway at the level of the participant organelles shows great divergences between yeasts, mammals and plants. The unique features of the early secretory pathway in plants—a polydisperse mobile Golgi apparatus and the lack of an intermediate compartment between the endoplasmic reticulum and the Golgi apparatus—suggests the participation of many plant-specific molecules in the maintenance and regulation of protein trafficking. The advent of live cell imaging fluorescently-tagged proteins and the increased usage of cryotechniques in electron microscopy has led to dramatic advances in our understanding of the early secretory pathway of plants. In contrast, contradictions have sometimes emerged and interpretations for the same observations have not necessarily reached a consensus. In this review we have attempted to provide the reader with a critical, yet balanced overview of this rapidly expanding research area. Wherever possible we have contrasted a particular event or parameter with the corresponding situation in yeast or mammalian cells. We have also taken the opportunity to suggest suitable experimentation in newly emerging sectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号