首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of the T‐cell receptor (TCR) and that of the B‐cell receptor (BCR) elicits tyrosine‐phosphorylation of proteins that belongs to similar functional categories, but result in distinct cellular responses. Large‐scale analyses providing an overview of the signaling pathways downstream of TCR or BCR have not been described, so it has been unclear what components of these pathways are shared and which are specific. We have now performed a systematic analysis and provide a comprehensive list of tyrosine‐phosphorylated proteins (PY proteome) with quantitative data on their abundance in T cell, B cell, and nonlymphoid cell lines. Our results led to the identification of novel tyrosine‐phosphorylated proteins and signaling pathways not previously implicated in immunoreceptor signal transduction, such as clathrin, zonula occludens 2, eukaryotic translation initiation factor 3, and RhoH, suggesting that TCR or BCR signaling may be linked to downstream processes such as endocytosis, cell adhesion, and translation. Thus comparative and quantitative studies of tyrosine‐phosphorylation have the potential to expand knowledge of signaling networks and to promote understanding of signal transduction at the system level.  相似文献   

2.
3.
4.
5.
The control of body size in insects   总被引:1,自引:0,他引:1  
Control mechanisms that regulate body size and tissue size have been sought at both the cellular and organismal level. Cell-level studies have revealed much about the control of cell growth and cell division, and how these processes are regulated by nutrition. Insulin signaling is the key mediator between nutrition and the growth of internal organs, such as imaginal disks, and is required for the normal proportional growth of the body and its various parts. The insulin-related peptides of insects do not appear to control growth by themselves, but act in conjunction with other hormones and signaling molecules, such as ecdysone and IDGFs. Size regulation cannot be understood solely on the basis of the mechanisms that control cell size and cell number. Size regulation requires mechanisms that gather information on a scale appropriate to the tissue or organ being regulated. A new model mechanism, using autocrine signaling, is outlined by which tissue and organ size regulation can be achieved. Body size regulation likewise requires a mechanism that integrates information at an appropriate scale. In insects, this mechanism operates by controlling the secretion of ecdysone, which is the signal that terminates the growth phase of development. The mechanisms for size assessment and the pathways by which they trigger ecdysone secretion are diverse and can be complex. The ways in which these higher-level regulatory mechanisms interact with cell- and molecular- level mechanisms are beginning to be elucidated.  相似文献   

6.
Gap junctions are clusters of intercellular channels that provide cells, in all metazoan organisms, with a means of communicating directly with their neighbours. Surprisingly, two gene families have evolved to fulfil this fundamental, and highly conserved, function. In vertebrates, gap junctions are assembled from a large family of connexin proteins. Innexins were originally characterized as the structural components of gap junctions in Drosophila, an arthropod, and the nematode Caenorhabditis elegans. Since then, innexin homologues have been identified in representatives of the other major invertebrate phyla and in insect-associated viruses. Intriguingly, functional innexin homologues have also been found in vertebrate genomes. These studies have informed our understanding of the molecular evolution of gap junctions and have greatly expanded the numbers of model systems available for functional studies. Genetic manipulation of innexin function in relatively simple cellular systems should speed progress not only in defining the importance of gap junctions in a variety of biological processes but also in elucidating the mechanisms by which they act.  相似文献   

7.
The fruit fly Drosophila melanogaster has emerged as a popular model to investigate fundamental principles of neural circuit operation. The sophisticated genetics and small brain permit a cellular resolution understanding of innate and learned behavioural processes. Relatively recent genetic and technical advances provide the means to specifically and reproducibly manipulate the function of many fly neurons with temporal resolution. The same cellular precision can also be exploited to express genetically encoded reporters of neural activity and cell-signalling pathways. Combining these approaches in living behaving animals has great potential to generate a holistic view of behavioural control that transcends the usual molecular, cellular and systems boundaries. In this review, we discuss these approaches with particular emphasis on the pioneering studies and those involving learning and memory.  相似文献   

8.
9.
Understanding biological processes at the mechanistic level requires a systematic charting of the physical and functional links between all cellular components. While protein–protein and protein–nucleic acid networks have been subject to many global surveys, other critical cellular components such as membrane lipids have rarely been studied in large-scale interaction screens. Here, we review the development of photoactivatable and clickable lipid analogues–so-called bifunctional lipids–as novel chemical tools that enable a global profiling of lipid–protein interactions in biological membranes. Recent studies indicate that bifunctional lipids hold great promise in systematic efforts to dissect the elaborate crosstalk between proteins and lipids in live cells and organisms. This article is part of a Special Issue entitled Tools to study lipid functions.  相似文献   

10.
Network responses to DNA damaging agents   总被引:4,自引:0,他引:4  
Begley TJ  Samson LD 《DNA Repair》2004,3(8-9):1123-1132
  相似文献   

11.
Measuring levels of mRNAs in the process of translation in individual cells provides information on the proteins involved in cellular functions at a given point in time. The protocol dubbed Translating Ribosome Affinity Purification (TRAP) is able to capture this mRNA translation process in a cell-type-specific manner. Based on the affinity purification of polysomes carrying a tagged ribosomal subunit, TRAP can be applied to translatome analyses in individual cells, making it possible to compare cell types during the course of developmental processes or to track disease development progress and the impact of potential therapies at molecular level. Here we report an optimized version of the TRAP protocol, called TRAP-rc (rare cells), dedicated to identifying engaged-in-translation RNAs from rare cell populations. TRAP-rc was validated using the Gal4/UAS targeting system in a restricted population of muscle cells in Drosophila embryos. This novel protocol allows the recovery of cell-type-specific RNA in sufficient quantities for global gene expression analytics such as microarrays or RNA-seq. The robustness of the protocol and the large collections of Gal4 drivers make TRAP-rc a highly versatile approach with potential applications in cell-specific genome-wide studies.  相似文献   

12.
N-acylphosphatidylethanolamine (NAPE) is a minor phospholipid resulting from the transfer of an acyl chain from an acyl donor to the primary amine of the ethanolamine moiety of phosphatidylethanolamine (PE). Occurring in plant and animal kingdoms as well as in prokaryotic cells, it is synthesized in higher amounts in membranes during cellular stresses and tissue damage, and it is widely thought to be the precursor of the lipid mediator, N-acylethanolamine (NAE), which modulates the endocannabinoid signaling pathway and therefore regulates various physiological processes. However, recent studies have shown that NAPE is also a bioactive molecule that is involved in several physiological functions. The present paper reviews the occurrence of NAPE in animals and plants and focuses on the various properties of NAPE observed in vitro and in vivo. The different metabolic pathways promoting the synthesis and degradation of NAPE are also discussed and the differences between animals and plants are underlined.  相似文献   

13.
14.
15.
碱蓬属植物耐盐机理研究进展   总被引:8,自引:3,他引:5  
张爱琴  庞秋颖  阎秀峰 《生态学报》2013,33(12):3575-3583
碱蓬属(Suaeda)植物是一类典型的真盐生植物,属于重要的盐生植物资源,全球广泛分布.人们已经对20种碱蓬属植物进行了观察和盐胁迫实验,研究了不同器官或组织的生理生化特征及其对盐胁迫的反应,并基于这些研究分析了盐胁迫的应答机制.叶片肉质化、细胞内离子区域化、渗透调节物质增加和抗氧化系统能力增强是碱蓬属植物响应和适应盐胁迫的重要方式和途径.但迄今为止的研究工作尚有一定的局限性,主要包括:研究工作主要集中在植物地上部分,而对植物地下部分的研究较少;多是少数生物学指标或生理学现象的单独观察,而缺乏对生理代谢过程的整体和综合分析;针对某种碱蓬的独立分析较多,而与近缘种的比较研究较少;植物对中性盐胁迫的反应研究较多,而对碱性盐的研究较少.为进一步系统阐明碱蓬属植物的耐盐机制,今后的工作应注重碱蓬属植物响应和适应盐胁迫的信号网络和调控机制研究,基于系统生物学研究思路,采用现代组学技术探索该属植物响应盐胁迫的由复杂信号网络调控的特殊生理特征和特异代谢途径.  相似文献   

16.

Background

S-nitrosylation (or S-nitrosation) by Nitric Oxide (NO), i.e., the covalent attachment of a NO group to a cysteine thiol and formation of S-nitrosothiols (R-S-N=O or RSNO), has emerged as an important feature of NO biology and pathobiology. Many NO-related biological functions have been directly associated with the S-nitrosothiols and a considerable number of S-nitrosylated proteins have been identified which can positively or negatively regulate various cellular processes including signaling and metabolic pathways.

Scope of the review

Taking account of the recent progress in the field of research, this review focuses on the regulation of cellular processes by S-nitrosylation and Trx-mediated cellular homeostasis of S-nitrosothiols.

Major conclusions

Thioredoxin (Trx) system in mammalian cells utilizes thiol and selenol groups to maintain a reducing intracellular environment to combat oxidative/nitrosative stress. Reduced glutathione (GSH) and Trx system perform the major role in denitrosylation of S-nitrosylated proteins. However, under certain conditions, oxidized form of mammalian Trx can be S-nitrosylated and then it can trans-S-nitrosylate target proteins, such as caspase 3.

General significance

Investigations on the role of thioredoxin system in relation to biologically relevant RSNOs, their functions, and the mechanisms of S-denitrosylation facilitate the development of drugs and therapies. This article is part of a Special Issue entitled Regulation of Cellular Processes.  相似文献   

17.
18.
19.
The longstanding use of Drosophila as a model for cell and developmental biology has yielded an array of tools. Together, these techniques have enabled analysis of cell and developmental biology from a variety of methodological angles. Live imaging is an emerging method for observing dynamic cell processes, such as cell division or cell motility. Having isolated mutations in uncharacterized putative cell cycle proteins it became essential to observe mitosis in situ using live imaging. Most live imaging studies in Drosophila have focused on the embryonic stages that are accessible to manipulation and observation because of their small size and optical clarity. However, in these stages the cell cycle is unusual in that it lacks one or both of the gap phases. By contrast, cells of the pupal wing of Drosophila have a typical cell cycle and undergo a period of rapid mitosis spanning about 20 hr of pupal development. It is easy to identify and isolate pupae of the appropriate stage to catch mitosis in situ. Mounting intact pupae provided the best combination of tractability and durability during imaging, allowing experiments to run for several hours with minimal impact on cell and animal viability. The method allows observation of features as small as, or smaller than, fly chromosomes. Adjustment of microscope settings and the details of mounting, allowed extension of the preparation to visualize membrane dynamics of adjacent cells and fluorescently labeled proteins such as tubulin. This method works for all tested fluorescent proteins and can capture submicron scale features over a variety of time scales. While limited to the outer 20 µm of the pupa with a conventional confocal microscope, this approach to observing protein and cellular dynamics in pupal tissues in vivo may be generally useful in the study of cell and developmental biology in these tissues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号