首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
阿维菌素B1a组分高产菌株的定向选育   总被引:2,自引:0,他引:2  
以阿维链霉菌(Streptomyces avermitilis)1-17为出发菌株,分别使用紫外线及亚硝基胍并结合L-异亮氨酸诱导手段进行诱变处理,得到AVMB1a组分摇瓶发酵水平较出发菌株提高12.86%的突变株3-6.传代实验表明该菌株的高产性能稳定.结果表明,采用UV、NTG诱变结合L-Ile诱导的手段可以获得B1a组分显著提高的菌株.  相似文献   

2.
3.
【目的】明确截形叶螨Tetranychus truncatus Ehara对哒螨灵、阿维菌素和阿维·哒螨灵3种田间常用药剂产生抗性的速率和稳定性,为叶螨的抗性综合治理提供一定的理论依据。【方法】采用室内生测法,对截形叶螨进行药剂的抗性筛选、衰退和再恢复规律研究。【结果】经过连续30代的药剂汰选,截形叶螨对哒螨灵、阿维菌素和阿维·哒螨灵3种药剂产生了不同程度的抗药性,抗性指数分别达到197.50、19.56和12.57;停止喷药后,其抗性都有所下降,其中截形叶螨对哒螨灵的抗性最不稳定,培育至30代后,抗性衰退率达到63.54%,对阿维菌素的抗性较为稳定,抗性衰退率为23.30%;再次恢复用药后,截形叶螨对哒螨灵、阿维菌素和阿维哒螨灵抗性再度回升,以抗哒螨灵品系的抗性恢复最快,药剂汰选30代后,增长率达到了58.47%,阿维·哒螨灵次之(增长率为38.67%),抗阿维菌素的品系抗性恢复最慢,增长率仅为22.86%。【结论】截形叶螨对哒螨灵抗性不稳定,停止用药后,敏感性易恢复,对阿维菌素和阿维·哒螨灵的抗性较稳定,一旦抗性产生不易衰退,故田间应用时应交替轮换用药。  相似文献   

4.
The biological activity of avermectin B components is superior to that of avermectin A components, which are derived from avermectin B by avermectin B 5-O-methyltransferase. Gene disruption, targeting avermectin B 5-O-methyltransferase gene in Streptomyces avermitilis, was carried out to obtain a strain of avermectin B producer. Phenotype analysis of the mutant with the disrupted O-methyltransferase gene showed that only avermectin B components were produced with a significant increase in production  相似文献   

5.
Avermectin fermentation wastewater was bio-refractory and the waste products could not be completely eliminated during biological treatment. In this paper, strain LYH degrading avermectin was isolated from the activated sludge of the avermectin wastewater treatment plant. It was identified as a Bacteroidetes endosymbiont by 16S rDNA sequence analysis and physio-biochemical tests, respectively. The optimal degradation conditions were as follows: temperature 30°C, pH 7.0–8.0, shaking speed 150 rev min−1. The concentration of avermectin was detected by HPLC. The proposed biodegradation pathways of avermectin were given in the light of the metabolites detected, which were analysed by HPLC and the LC-MS method. These results indicated that it was feasible and potential to enhance avermectin degradation by strain LYH.  相似文献   

6.
Because of the loss of productivity in industrial strains (as a consequence of genetic instability), the selection of spontaneous and induced mutants in Streptomyces might generate enhanced producers of bioactive compounds. In this work, a spontaneously high producing mutant of Streptomyces avermitilis, strain 267/2H, was isolated. This mutant produced 8.2 times more avermectin B1 than the wild type and it was treated with methyl methanesulphonate (MMS) in order to obtain better avermectin producers. One mutant, strain IPT-85, produced about 16 times more avermectin than the wild-type strain ATCC 31267 and twice as much as the parental strain 267/2H. Reversion studies showed that avermectin production by the IPT-85 mutant was unstable and required constant selection to maintain high levels of avermectin B1 production. Upon a second MMS treatment of IPT-85, a new avermectin-aglycone-producing mutant, strain IPT 85-62, was isolated. Received: 2 March 1999 / Received revision: 16 June 1999 / Accepted: 27 June 1999  相似文献   

7.
以阿维链霉菌(Streptomyces avermitilis)76-12为出发菌株,采用亚硝基胍、吖啶橙、紫外线和氯化锂分别对其孢子和原生质体进行诱变,经抗代谢物理性筛选,获得一系列高产突变株,其中N-1-2高产突变株的发酵单位是出发菌株的2.47倍。实验中同时获得了只产阿维菌素a组分的突变株G-32、Bla组分含量高的Ave8菌株和产蓝绿色孢子的突变株UA-G等。  相似文献   

8.
9.
阿维链霉菌bkdAB的基因中断对阿维菌素合成的影响   总被引:5,自引:0,他引:5  
以阿维菌B组分菌株StreptomycesavermitilisBjbm0 0 0 6为出发菌株 ,用PCR的方法构建bkdAB基因簇(Branched_chainα_ketoaciddehydrogenasegeneAB)的基因置换质粒pHJ582 1(pHZ13 58∷bkdAB&erm) ,并对其进行基因中断 ,得到重组菌株Bjbm582 1。Bjbm582 1的发酵产物经HPLC检测发现 ,除了产生B1a和B2a外 ,还产生一种原菌株没有的新组分 ,3个组分的总含量只有出发菌株Bjbm0 0 0 6的 2 5%。结果表明bkdAB的中断不仅部分阻断了阿维菌素的合成 ,还阻断了阿维菌素b组分的合成 ,可以推测bkdAB的产物在阿维菌素合成途径中主要承担了α酮基异戊酸脱氢酶 (α_ketoisovalericaciddehydrogenase)角色  相似文献   

10.
Ribosome recycling factor (RRF), encoded by frr gene, is involved in the release of ribosomes from the translational post-termination complex for a new round of initiation. In this study, the frr gene with either its own promoter or with ermE*p was cloned into a multi-copy vector, pKC1139, and a single-site integrative vector, pSET152, respectively. The resulting plasmids were transformed into Streptomyces avermitilis wild-type strain ATCC31267, avermectin high-producing mutant strain 76-02-e, and the engineered strain GB-165 that produces only avermectin B. The results showed that overexpression of frr increased avermectin yield (by 3- to 3.7-fold in the wild-type strain) and revealed an frr gene “copy number effect”; i.e., multiple copies of frr had a greater promoting effect on avermectin production than a single copy in each of the three transformed S. avermitilis strains. Comparison of the growth and expression of the ave genes in an frr-overexpressing strain and wild-type ATCC31267 indicated that frr overexpression promoted cell growth as well as the expression of ave genes (including pathway-specific positive regulatory gene aveR for avermectin biosynthesis and ave structural genes), leading in turn to avermectin overproduction. These findings provide an effective approach for the improvement of antibiotic production in Streptomyces.  相似文献   

11.
Studies on the biosynthesis of avermectins   总被引:2,自引:0,他引:2  
To elucidate the pathway of avermectin biosynthesis, the biosynthetic relationships of avermectins A1a, A2a, B1a, B2a, and their respective monosaccharides and aglycones were studied. 14C-labeled avermectin compounds prepared from [1-14C]acetate were fed to Streptomyces avermitilis strain MA5502 and their metabolites were determined. Two furan ring-free aglycones, 6,8a-seco-6,8a-deoxy-5-keto avermectin B1a and B2a, have been isolated from the fermentation broth of a blocked mutant of S. avermitilis. Addition of the compounds and a semisynthetic compound, 5-keto avermectin B2a aglycone, to the fermentation medium of a second blocked mutant established that the two compounds are intermediates in the avermectin biosynthetic pathway immediately preceding avermectin aglycones.  相似文献   

12.
A genetic recombination study of an industrial strain of Streptomyces avermitilis which produces avermectin is described. A genetic map has been constructed by analysis of haploid recombinants and linkage relationships of 16 marker loci. Fifteen avermectin-nonproducing mutants, produced by mutagenesis, were classified into two phenotypically different groups, of which one produced avermectin aglycon and the other was able to convert avermectin aglycon to avermectins. Two different mutants were found to map closely to each other.  相似文献   

13.
【目的】通过诱变筛选技术选育阿维菌素高产突变株,对其发酵培养基进行响应面优化,提高阿维菌素产量。【方法】采用常压室温等离子体(ARTP)诱变技术,结合链霉抗性和卡那霉素抗性筛选法及96深孔板高通量筛选法,筛选阿维菌素高产株。在单因素实验的基础上,应用响应面分析法对其发酵培养基进行优化,最后确定最佳培养基配方。【结果】获得一株遗传性状稳定的阿维菌素高产株K-1A6,其阿维菌素产量达到4.22 g/L,比出发菌株9-39提高了23.4%,在最佳培养基中阿维菌素产量达到5.36 g/L,较优化前提高了27.01%。【结论】通过对阿维链霉菌9-39菌株进行ARTP诱变筛选及发酵培养基优化研究能显著提高阿维菌素的产量。  相似文献   

14.
【目的】考察除虫链霉菌基因组中其它聚酮合成酶类(Polyketide synthase,PKS)抗生素生物合成基因簇的敲除突变对于阿维菌素产量的影响。【方法】构建了11个PKS基因簇的打靶Cosmid和质粒载体,导入除虫链霉菌中筛选突变株。【结果】在工业菌株MMR630中成功敲除了10个PKS基因簇。发酵结果显示7个PKS基因簇敲除突变株中阿维菌素的产量均有不同程度的提高,而2个突变株不能产生阿维菌素。然而,在3个连续敲除2个PKS基因簇的突变株中阿维菌素产量没有能够超过单个PKS敲除突变株的提升幅度。【结论】除虫链霉菌基因组的一些PKS基因簇的敲除可以提高阿维菌素的产量,同时暗示同一类次生代谢产物的代谢流之间存在复杂的相互作用关系。  相似文献   

15.
Avermectins are 16-membered macrocyclic polyketides with potent antiparasitic activities, produced by Streptomyces avermitilis. Upstream of the avermectin biosynthetic gene cluster, there is the avtAB operon encoding the ABC transporter AvtAB, which is highly homologous to the mammalian multidrug efflux pump P-glycoprotein (Pgp). Inactivation of avtAB had no effect, but increasing the concentration of avtAB mRNA 30-500-fold, using a multi-copy plasmid in S. avermitilis, enhanced avermectin production about two-fold both in the wild-type and in a high-yield producer strain on agar plates. In liquid industrial fermentation medium, the overall productivity of avermectin B1a in the engineered high-yield producer was improved for about 50%, from 3.3 to 4.8?g/l. In liquid YMG medium, moreover, the ratio of intracellular to extracellular accumulation of avermectin B1a was dropped from 6:1 to 4.5:1 in response to multiple copies of avtAB. Additionally, the overexpression of avtAB did not cause any increased expression of the avermectin biosynthetic genes through RT-PCR analysis. We propose that the AvtAB transporter exports avermectin, and thus reduces the feedback inhibition on avermectin production inside the cell. This strategy may be useful for enhancing the production of other antibiotics.  相似文献   

16.
Selective cytostatic and cytotoxic effects of avermectins]   总被引:1,自引:0,他引:1  
A natural avermectin complex, aversectin C, was shown to be capable of exerting selective cytostatic effect. It killed proliferating neuroblastoma B 103 cells but was non-toxic for differentiated cells of this culture. The activity of aversectin C was related neither to activation of the GABA alpha-receptors nor to their blocking and was at a large extent due to the action of avermectin A1, a component of aversectin C.  相似文献   

17.
The effect of avermectins (aversectin C, aversectin C1 and avermectin B1) on the vincristine antitumor action with respect to murine transplantable tumors was studied. It was shown that both the natural avermectins mixtures and the individual avermectin B1 potentiated the antitumor action of vincristine on Ehrlich carcinoma, melanoma B16 and P388 lymphoid leukemia, including the vincristine resistant strain P388. Such an effect of the avermectins was observed only when they were administered after vincristine.  相似文献   

18.
19.
To isolate a gene for stimulating avermectin production, a genomic library of Streptomyces avermitilis ATCC 31267 was constructed in Streptomyces lividans TK21 as the host strain. An 8.0-kb DNA fragment that significantly stimulated actinorhodin and undecylprodigiosin production was isolated. When wild-type S. avermitilis was transformed with the cloned fragment, avermectin production increased approximately 3.5-fold. The introduction of this fragment into high-producer (ATCC 31780) and semi-industrial (L-9) strains also resulted in an increase of avermectin production by more than 2.0- and 1.4-fold, respectively. Subclones were studied to locate the minimal region involved in stimulation of pigmented-antibiotic and avermectin production. An analysis of the nucleotide sequence of the entire DNA fragment identified eight complete and one incomplete open reading frame. All but one of the deduced proteins exhibited strong homology (68 to 84% identity) to the hypothetical proteins of Streptomyces coelicolor A3(2). The orfX gene product showed no significant similarity to any other protein in the databases, and an analysis of its sequence suggested that it was a putative membrane protein. Although the nature of the stimulatory effect is still unclear, the disruption of orfX revealed that this gene was intrinsically involved in the stimulation of avermectin production in S. avermitilis.  相似文献   

20.
Avermectin and its analogues are produced by the actinomycete Streptomyces avermitilis and are major commercial products for parasite control in the fields of animal health, agriculture, and human infections. Historically, the avermectin analogue doramectin (CHC-B1), which is sold commercially as Dectomax is co-produced during fermentation with the undesired analogue CHC-B2 at a CHC-B2:CHC-B1 ratio of 1.6:1. Although the identification of the avermectin gene cluster has allowed for characterization of most of the biosynthetic pathway, the mechanism for determining the avermectin B2:B1 ratio remains unclear. The aveC gene, which has an essential role in avermectin biosynthesis, was inactivated by insertional inactivation and mutated by site-specific mutagenesis and error-prone PCR. Several unrelated mutations were identified that resulted in improved ratios of the desirable avermectin analogue CHC-B1, produced relative to the undesired CHC-B2 fermentation component. High-throughput (HTP) screening of cultures grown on solid-phase fermentation plates and analysis using electrospray mass spectrometry was implemented to significantly increase screening capability. An aveC gene with mutations that result in a 4-fold improvement in the ratio of doramectin to CHC-B2 was identified. Subsequent integration of the enhanced aveC gene into the chromosome of the S. avermitilis production strain demonstrates the successful engineering of a specific biosynthetic pathway gene to significantly improve fermentation productivity of a commercially important product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号