首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
We have generated nine monoclonal antibodies against subunits of the maize (Zea mays L.) mitochondrial F1-ATPase. These monoclonal antibodies were generated by immunizing mice against maize mitochondrial fractions and randomly collecting useful hybridomas. To prove that these monoclonal antibodies were directed against ATPase subunits, we tested their cross-reactivity with purified F1-ATPase from pea cotyledon mitochondria. One of the antibodies ([alpha]-ATPaseD) cross-reacted with the pea F1-ATPase [alpha]-subunit and two ([beta]-ATPaseD and [beta]-ATPaseE) cross-reacted with the pea F1-ATPase [beta]-subunit. This established that, of the nine antibodies, four react with the maize [alpha]-ATPase subunit and the other five react with the maize [beta]-ATPase subunit. Most of the monoclonal antibodies cross-react with the F1-ATPase from a wide range of plant species. Each of the four monoclonal antibodies raised against the [alpha]-subunit recognizes a different epitope. Of the five [beta]-subunit antibodies, at least three different epitopes are recognized. Direct incubation of the monoclonal antibodies with the F1-ATPase failed to inhibit the ATPase activity. The monoclonal antibodies [alpha]-ATPaseD and [beta]-ATPaseD were bound to epoxide-glass QuantAffinity beads and incubated with a purified preparation of pea F1-ATPase. The ATPase activity was not inhibited when the antibodies bound the ATPase. The antibodies were used to help map the pea F1-ATPase subunits on a two-dimensional map of whole pea cotyledon mitochondrial protein. In addition, the antibodies have revealed antigenic similarities between various isoforms observed for the [alpha]- and [beta]-subunits of the purified F1-ATPase. The specificity of these monoclonal antibodies, along with their cross-species recognition and their ability to bind the F1-ATPase without inhibiting enzymic function, makes these antibodies useful and invaluable tools for the further purification and characterization of plant mitochondrial F1-ATPases.  相似文献   

2.
The properties of two monoclonal antibodies which recognize the epsilon subunit of Escherichia coli F1-ATPase were studied in detail. The epsilon subunit is a tightly bound but dissociable inhibitor of the ATPase activity of soluble F1-ATPase. Antibody epsilon-1 binds free epsilon with a dissociation constant of 2.4 nM but cannot bind epsilon when it is associated with F1-ATPase. Likewise epsilon cannot associate with F1-ATPase in the presence of high concentrations of epsilon-1. Thus epsilon-1 activates F1-ATPase which contains the epsilon subunit, and prevents added epsilon from inhibiting the enzyme. Epsilon-1 cannot bind to membrane-bound F1-ATPase. The epsilon-4 antibody binds free epsilon with a dissociation constant of 26 nM. Epsilon-4 can bind to the F1-ATPase complex, but, like epsilon-1, it reverses the inhibition of F1-ATPase by the epsilon subunit. The epsilon subunit remains crosslinkable to both the beta and gamma subunits in the presence of epsilon-4, indicating that it is not grossly displaced from its normal position by the antibody. Presumably the activation arises from more subtle conformational effects. Antibodies epsilon-4 and delta-2, which recognizes the delta subunit, both bind to F1F0 in E. coli membrane vesicles, indicating that these subunits are substantially exposed in the membrane-bound complex. Epsilon-4 inhibits the ATPase activity of the membrane-bound enzyme by about 50%, and Fab prepared from epsilon-4 inhibits by about 40%. This inhibition is not associated with any substantial change in the major apparent Km for ATP. These results suggest that inhibition of membrane-bound F1-ATPase arises from steric effects of the antibody.  相似文献   

3.
The immunological cross-reactivity of the ouabain-sensitive lamb kidney and the ouabain-insensitive rat kidney (Na+ + K+)-ATPase (EC 3.6.1.37) was examined using polyclonal and monoclonal antibodies. Studies using rabbit antisera prepared against both the lamb kidney and rat kidney holoenzymes showed the existence of substantial antigenic differences as well as similarities between the holoenzymes and the respective denatured alpha and beta subunits of these two enzymes. Quantitation of the extent of cross-reactivity using holoenzyme-directed antibodies showed a 40-60% cross-reactivity. In addition, rabbit antisera monospecific to the purified, denatured alpha and beta subunits of the lamb kidney enzyme showed about a 50% cross-reactivity towards the respective subunit of the rat enzyme. In contrast to the cross-reactivity observed using the polyclonal antibodies, six monoclonal antibodies specific for the alpha subunit of the lamb holoenzyme exhibited no cross-reactivity with the rat holoenzyme. Four of these monoclonal antibodies, however, showed substantial cross-reactivity with rat alpha subunit as resolved by SDS-polyacrylamide gel electrophoresis. A fifth antibody did not bind to the denatured alpha subunit of either the lamb or the rat enzyme. Another monoclonal antibody (M7-PB-E9), which is specific for an epitope previously implicated in the regulation of both ATP and ouabain binding to (Na+ + K+)-ATPase (Ball, W.J., Jr. (1984) Biochemistry 2275-2281) was found to bind to the denatured lamb alpha but not to the rat alpha. This antibody has identified a region of the lamb alpha that has an altered amino acid sequence in the ouabain-insensitive rat enzyme. These immunological studies indicate that there are substantial antigenic differences between the lamb and rat kidney (Na+ + K+)-ATPases. The majority of these antigenic differences appear to be due to variations in the tertiary structures rather than to variations in the primary structures of the alpha subunits.  相似文献   

4.
The NH2-terminal amino acid sequence of the 100 kilodalton subunit of porcine gastric H+,K+-ATPase has been determined to be YKAENYELYQVELGPGP. Although the NH2-terminal region of this protein is not similar to the same region of the lamb kidney Na+,K+-ATPase catalytic subunit, other regions of these ATPase proteins appear to be homologous. Both monoclonal and polyclonal antibodies raised to lamb kidney Na+,K+-ATPase and its alpha, but not beta, subunit cross-react with the 100 kilodalton protein of H+,K+-ATPase.  相似文献   

5.
Vacuolar H+ ATPases reside in the plasma membrane of several segments of the mammalian nephron. In the proximal tubule, H+ ATPase is located in both the brush-border microvilli and in subvillar invaginations, while in the collecting duct intercalated cells, it is primarily in plasmalemma-associated membranes. H+ ATPase isolated from bovine kidney brush border has a cluster of polypeptides of Mr greater than 31,000 found associated with the Mr = 31,000 subunit, whereas H+ ATPase isolated from microsomes dose not have the additional associated polypeptides (Wang, Z.-Q., and Gluck, S. (1990) J. Biol. Chem. 265, 21957-21965, 1990). In this study, we describe the production of several new monoclonal antibodies to the bovine vacuolar H+ ATPase Mr = 31,000 subunit. Two of the antibodies differed in reactivity to the cluster of Mr greater than 31,000 subunits found in purified bovine kidney brush-border H+ ATPase. Antibody E11 reacted with both the Mr = 31,000 and Mr greater than 31,000 subunits and stained renal brush border intensely. Antibody H8 did not react with the Mr greater than 31,000 polypeptides and did not stain brush border. The heterogeneity of the Mr greater than 31,000 subunits did not appear attributable to glycosylation or phosphorylation. These findings provide further evidence for heterogeneity of the Mr = 31,000 subunit in different renal membrane compartments and suggest a role for the Mr greater than 31,000 polypeptides specific to the brush-border microvilli.  相似文献   

6.
Monoclonal antibodies to rabbit skeletal muscle phosphorylase kinase were produced by the conventional hybridoma cell technique. 90 out of 600 hybridomas were found to produce phosphorylase kinase binding antibodies from which only five secreted also phosphorylase kinase activity affecting antibodies. Three of them were cloned; two hybridomas resisted all cloning efforts. Employing immunoblot technique all monoclonal antibodies show cross-reactivity with the alpha, beta, and gamma subunits of phosphorylase kinase indicating that similar, if not identical, epitopes are present on these three subunits. No cross-reactivity with delta is observed. Monoclonal antibodies secreted by two clones which bind to the alpha subunit stimulate the Ca2+-independent A0 activity of phosphorylase kinase more than 30-fold, whereas all other monoclonal antibodies obtained are ineffective in this respect. Monoclonal antibodies binding to the beta subunit inhibit the Ca2+-dependent activities significantly. Antibody produced by one hybridoma binds to the alpha, beta, and gamma subunits with approximately the same affinity. Based on the dual function of calmodulin in phosphorylase kinase (Hessová, Z., Varsányi, M., and Heilmeyer, L.M.G., Jr. (1985) Eur. J. Biochem. 146, 107-115) we conclude that binding of anti-alpha monoclonal antibodies to a regulatory domain in the alpha subunit results in an uncoupling of the inhibitory function of the Ca2+-free delta from the holoenzyme which leads to a concomitant increase in A0 activity. Furthermore, binding of anti-beta monoclonal antibodies to the beta subunit prevents a signal transfer from the Ca2+-saturated delta to the catalytic site of the holoenzyme which inhibits the Ca2+-dependent activities.  相似文献   

7.
Five stable lines of myeloma-spleen cell hybrids, producing antibodies against the proteolipid subunit 9 of the yeast mitochondrial H+-ATPase F0-sector, have been isolated by immunizing mice with a proteolipid preparation in the presence of sodium dodecyl sulphate. One of these monoclonal antibodies also reacted with subunit 8 of the enzyme complex indicating a shared epitope. The antibodies did not react with the holo-H+-ATPase, suggesting that their epitopes are shielded by other subunits of the enzyme complex.  相似文献   

8.
The tonoplast H+-ATPase of Acer pseudoplatanus has been purified from isolated vacuoles. After solubilization, the purification procedure included size-exclusion and ion-exchange chromatography. The H+-ATPase consists of at least eight subunits, of 95, 66, 56, 54, 40, 38, 31, and 16 kD, that did not cross-react with polyclonal antibodies raised to the plasmalemma ATPase of Arabidopsis thaliana. The 66-kD polypeptide cross-reacted with monoclonal antibodies raised to the 70-kD subunit of the vacuolar H+-ATPase of oat roots. The functional molecular size of the tonoplast H+-ATPase, analyzed in situ by radiation inactivation, was found to be around 400 kD. The 66-kD subunit of the tonoplast H+-ATPase was rapidly phosphorylated by [[gamma]-32P]ATP in vitro. The complete loss of radio-activity in the 66-kD subunit after a short pulse-chase experiment with unlabeled ATP reflected a rapid turnover, which characterizes a phosphorylated intermediate. Phosphoenzyme formed from ATP is an acylphosphate-type compound as shown by its sensitivity to hydroxylamine and alkaline pH. These results lead us to suggest that the tonoplast H+-ATPase of A. pseudoplatanus is a vacuolar-type ATPase that could operate with a plasmalemma-type ATPase catalytic mechanism.  相似文献   

9.
Antibodies were raised against isolated, delipidated catalytic [alpha] and glycoprotein [beta] subunits of the Na+,K+-dependent ATPase purified from lamb kidney medulla. The specificity of each antiserum was confirmed by agar double-diffusion precipitation, immunoelectrophoresis, and polyacrylamide gel electrophoresis. A solid phase adsorption assay was also employed to determine antibody binding titers and to further test the specificity of these antisera. Antibodies raised to the alpha subunit had a strong reactivity and similar titer values for both the holoenzyme and the alpha subunit and a low-affinity cross-reactivity with the beta subunit. In contrast, beta-subunit-directed antibodies had little reactivity or binding with the holoenzyme and a low-affinity cross-reactivity with the alpha subunit. Competition binding studies revealed that about 80% of the alpha-subunit-specific antibodies bound to the holoenzyme, indicating that similar sets of antigenic sites are exposed in the lipid-embedded holoenzyme complex and in the isolated alpha subunit. Competition binding studies also suggest that the subunit cross-reactivities of the antisera may not result from simple contamination of the respective antigens, but that there may be partial homologies of some antigenic sites. In addition, the beta-directed antibodies had no effect on Na+,K+-ATPase activity, while the alpha-directed antibodies were effective inhibitors of activity. This indicates that at least some functionally important antigenic sites of the alpha subunit may be unaltered by its isolation and delipidation.  相似文献   

10.
A sequence of 10 amino acids (I-C-S-D-K-T-G-T-L-T) of ion motive ATPases such as Na+/K+-ATPase is similar to the sequence of the beta subunit of H+-ATPases, including that of Escherichia coli (I-T-S-T-K-T-G-S-I-T) (residues 282-291). The Asp (D) residue phosphorylated in ion motive ATPase corresponds to Thr (T) of the beta subunit. This substitution may be reasonable because there is no phosphoenzyme intermediate in the catalytic cycle of F1-ATPase. We replaced Thr-285 of the beta subunit by an Asp residue by in vitro mutagenesis and reconstituted the alpha beta gamma complex from the mutant (or wild-type) beta and wild-type alpha and gamma subunits. The uni- and multisite ATPase activities of the alpha beta gamma complex with mutant beta subunits were about 20 and 30% of those with the wild-type subunit. The rate of ATP binding (k1) of the mutant complex under uni-site conditions was about 10-fold less than that of the wild-type complex. These results suggest that Thr-285, or the region in its vicinity, is essential for normal catalysis of the H+-ATPase. The mutant complex could not form a phosphoenzyme under the conditions where the H+/K+-ATPase is phosphorylated, suggesting that another residue(s) may also be involved in formation of the intermediate in ion motive ATPase. The wild-type alpha beta gamma complex had slightly different kinetic properties from the wild-type F1, possibly because it did not contain the epsilon subunit.  相似文献   

11.
We analyzed the interaction of 14 monoclonal and 5 polyclonal anti-ATPase antibodies with the Ca2(+)-ATPase of rabbit sarcoplasmic reticulum and correlated the location of their epitopes with their effects on ATPase-ATPase interactions and Ca2+ transport activity. All antibodies were found to bind with high affinity to the denatured Ca2(+)-ATPase, but the binding to the native enzyme showed significant differences, depending on the location of antigenic sites within the ATPase molecule. Of the seven monoclonal antibodies directed against epitopes on the B tryptic fragment of the Ca2(+)-ATPase, all except one (VIE8) reacted with the enzyme in native sarcoplasmic reticulum vesicles in both the E1 and E2V conformations. Therefore these regions of the Ca2(+)-ATPase molecule are freely accessible in the native enzyme. The monoclonal antibody VIE8 bound with high affinity to the Ca2(+)-ATPase only in the E1 conformation stabilized by 0.5 mM Ca2+ but not in the E2V conformation stabilized by 0.5 mM EGTA and 5 mM vanadate. Several antibodies that reacted with the B fragment interfered with the crystallization of Ca2(+)-ATPase in the presence of EGTA and vanadate and at least two of them destabilized preformed Ca2(+)-ATPase crystals, suggesting inhibition of interactions between ATPase molecules. Of five monoclonal antibodies with epitopes on the A1 tryptic fragment of the Ca2(+)-ATPase only one gave strong reaction with the native enzyme, and none interfered with ATPase-ATPase interactions as measured by the polarization of fluorescence of FITC-labeled Ca2(+)-ATPase. Therefore the regions of the molecule containing these epitopes are relatively inaccessible in the native structure. Partial tryptic cleavage of the Ca2(+)-ATPase into the A1, A2 and B fragments did not promote the reaction of anti-A1 antibodies with sarcoplasmic reticulum vesicles, but solubilization of the membrane with C12E8 rendered the antigenic site fully accessible to several of them, suggesting that their epitopes are located in areas of contacts between ATPase molecules. Two monoclonal anti-B antibodies that interfered with ATPase-ATPase interactions, produced close to 50% inhibition of the rate of ATP-dependent Ca2+ transport, with significant inhibition of ATPase; this may suggest a role for ATPase oligomers in the regulation of Ca2+ transport. The other antibodies that interact with the native Ca2(+)-ATPase produced no significant inhibition of ATPase activity even at saturating concentrations; therefore their antigenic sites do not undergo major movements during Ca2+ transport.  相似文献   

12.
The H+-ATPase complex has been isolated from the membranes of the anaerobic bacterium Lactobacillus casei by two independent methods. 1. The crossed-immunoelectrophoresis of the 14C-labelled ATPase complex against antibodies to a highly purified soluble ATPase has been used. The subunit composition of the complex has been established by autoradiography. The soluble part of L. casei ATPase, in contrast to coupling factor F1-ATPases of aerobic bacteria, chloroplasts and mitochondria which include two kinds of large subunit (alpha and beta), consists of one kind of large subunit with a molecular mass of 43 kDa. Moreover, a minor polypeptide of 25 kDa has been found in the soluble ATPase. Factor F0 of L. casei ATPase complex consists of a 16-kDa subunit and two subunits with molecular masses less than 14 kDa. 2. A dicyclohexylcarbodiimide-sensitive ATPase complex has been isolated from L. casei membranes by treating them with a mixture of octyl glucoside and sodium cholate. The complex, purified by centrifugation on a sucrose density gradient, contains the main subunits with molecular masses of 43 kDa, 25 kDa and 16 kDa and a dicyclohexylcarbodiimide-binding subunit with a molecular mass less than 14 kDa.  相似文献   

13.
Twenty-one hybridoma cell lines which secret antibodies to the subunits of the Escherichia coli F1-ATPase were produced. Included within the set are four antibodies which are specific for alpha, six for beta, three for gamma, four for delta and four for epsilon. The antibodies were divided into binding competition subgroups. Two such competition subgroups are represented for the alpha, beta, and epsilon subunits, one for delta and three for gamma. The ability to bind intact F1-ATPase was demonstrated for some of the antibodies to alpha and beta, and for all of those to delta, while the antibodies to gamma and epsilon gave unclear results. All of the antibodies to alpha and beta which bound ATPase were found to have effects on the ATPase activity of purified E. coli F1-ATPase. One of those to alpha inhibited activity by about 30%. Another anti-alpha was mildly stimulatory. The four antibodies to beta which bound ATPase inhibited activity by 90%. In contrast, membrane-bound ATPase was hardly affected by the antibodies to alpha, but was inhibited by 40-60% by the antibodies to beta. The other antibodies to alpha and beta bound only free subunits, or partially dissociated ATPase, suggesting that their epitopes are buried between subunits in ATPase. These antibodies had no effects on activity. The ability of the antibodies to recognize ATPase subunits present in crude extracts from mitochondria, chloroplasts, and a variety of bacteria was tested using nitrocellulose blots of sodium dodecyl sulfate-polyacrylamide gels. One anti-beta specifically recognized proteins in the range of 50,000-60,000 daltons in each of the extracts, although the reaction with mitochondrial beta was weak. Some of the other antibodies had limited cross-reaction, but most were specific for the E. coli protein. In some species, those proteins which were recognized by the anti-beta ran with a higher apparent molecular weight than proteins which were recognized by an anti-alpha. All antibodies which exhibited cross-reactivity were found to recognize sites which were not exposed in intact ATPase, implying that the surfaces which lie between subunits are most highly conserved.  相似文献   

14.
Mutants of Saccharomyces cerevisiae carrying defined lesions in the mitochondrial aap1 gene, coding for membrane subunit 8 of the H+-ATPase, have been investigated to examine the consequence of the mutations on the function and assembly of the enzyme complex. These include three mit- mutants, which cannot grow by oxidative metabolism due to their inability to synthesize full-length subunit 8, and three partial revertants of one of the mutants. The mutations in these strains have been previously characterized by DNA sequencing. The use of a monoclonal antibody to the beta subunit of the H+-ATPase as a probe of assembly defect revealed that the presence of subunit 8 is essential for the assembly of subunit 6 to the enzyme complex. Mitochondria isolated from the mit- mutants have negligible [32Pi]ATP exchange activity and they exhibited ATPase activity which is not sensitive to inhibition by oligomycin, indicating a defective membrane F0 sector. Normal assembly of subunit 8 (and subunit 6) was observed in the revertant strains, despite 8-9 amino-acid substitutions in the membrane-spanning region of the H+-ATPase subunit 8 in two of the strains. The assembled complex, however, exhibited reduced [32Pi]ATP exchange activity and low sensitivity to oligomycin, indicating that the product of the aap1 gene is a functional subunit of the mitochondrial H+-ATPase.  相似文献   

15.
The F1 ATPase of Bacillus subtilis BD99 was extracted from everted membrane vesicles by low-ionic-strength treatment and purified by DEAE-cellulose chromatography, hydrophobic interaction chromatography, and anion-exchange high-performance liquid chromatography. The subunit structure of the enzyme was examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the absence and presence of urea. In the absence of urea, the alpha and beta subunits comigrated and the ATPase was resolved into four bands. The mobility of the beta subunit, identified by immunoblotting with anti-beta from Escherichia coli F1, was altered dramatically by the presence of urea, causing it to migrate more slowly than the alpha subunit. The catalytic activity of the ATPase was strongly metal dependent; in the absence of effectors, the Ca2+-ATPase activity was 15- to 20-fold higher than the Mg2+ -ATPase activity. On the other hand, sulfite anion, methanol, and optimally, octylglucoside stimulated the Mg2+ -ATPase activity up to twice the level of Ca2+ -ATPase activity (specific activity, about 80 mumol of Pi per min per mg of protein). The F1 ATPase was also isolated from mutants of B. subtilis that had been isolated and characterized in this laboratory by their ability to grow in the presence of protonophores. The specific activities of the ATPase preparations from the mutant and the wild type were very similar for both Mg2+- and Ca2+ -dependent activities. Kinetic parameters (Vmax and Km for Mg-ATP) for octylglucoside-stimulated Mg2+ -ATPase activity were similar in both preparations. Structural analysis by polyacrylamide gel electrophoresis and isoelectric focusing indicated that the five F1 subunits from ATPase preparations from the mutant and wild-type strains had identical apparent molecular weights and that no charge differences were detectable in the alpha and beta subunits in the two preparations. Thus, the increased ATPase activity that had been observed in the uncoupler-resistant mutants is probably not due to a mutation in the F1 moiety of the ATPase complex.  相似文献   

16.
The beta subunits of the Escherichia coli F1-ATPase react independently with chemical reagents (Stan-Lotter, H. and Bragg, P.D. (1986) Arch. Biochem. Biophys. 248, 116-120). Thus, one beta subunit is readily crosslinked to the epsilon subunit, another reacts with N-N'-dicyclohexylcarbodiimide (DCCD), and a third one is modified by 4-chloro-7-nitrobenzofurazan (NbfCl). This asymmetric behaviour is not due to the association of the delta and epsilon subunits of the ATPase molecule with specific beta subunits since it is maintained in a delta, epsilon-deficient form of the enzyme.  相似文献   

17.
The alpha- and beta-subunits of Na+,K+-ATPase and H+,K+-ATPase were expressed in Sf9 cells in different combinations. Immunoprecipitation of the alpha-subunits resulted in coprecipitation of the accompanying beta-subunit independent of the type of beta-subunit. This indicates cross-assembly of the subunits of the different ATPases. The hybrid ATPase with the catalytic subunit of Na+,K+-ATPase and the beta-subunit of H+,K+-ATPase (NaKalphaHKbeta) showed an ATPase activity, which was only 12 +/- 4% of the activity of the Na+,K+-ATPase with its own beta-subunit. Likewise, the complementary hybrid ATPase with the catalytic subunit of H+,K+-ATPase and the beta-subunit of Na+,K+-ATPase (HKalphaNaKbeta) showed an ATPase activity which was 9 +/- 2% of that of the recombinant H+,K+-ATPase. In addition, the apparent K+ affinity of hybrid NaKalphaHKbeta was decreased, while the apparent K+ affinity of the opposite hybrid HKalphaNaKbeta was increased. The hybrid NaKalphaHKbeta could be phosphorylated by ATP to a level of 21 +/- 7% of that of Na+,K+-ATPase. These values, together with the ATPase activity gave turnover numbers for NaKalphabeta and NaKalphaHKbeta of 8800 +/- 310 min-1 and 4800 +/- 160 min-1, respectively. Measurements of phosphorylation of the HKalphaNaKbeta and HKalphabeta enzymes are consistent with a higher turnover of the former. These findings suggest a role of the beta-subunit in the catalytic turnover. In conclusion, although both Na+,K+-ATPase and H+,K+-ATPase have a high preference for their own beta-subunit, they can function with the beta-subunit of the other enzyme, in which case the K+ affinity and turnover number are modified.  相似文献   

18.
The coupling factor, F1-ATPase of Escherichia coli (ECF1) contains five different subunits, alpha, beta, gamma, delta, and epsilon. Properties of delta-deficient ECF1 have previously been described. F1-ATPase containing only the alpha, beta, and gamma subunits was prepared from E. coli by passage of delta-deficient ECF1 through an affinity column containing immobilized antibodies to the epsilon subunit. The delta, epsilon-deficient enzyme has normal ATPase activity but cannot bind to ECF1-depleted membrane vesicles. Both the delta and epsilon subunits are required for the binding of delta, epsilon-deficient ECF1 to membranes and the restoration of oxidative phosphorylation. Either delta or epsilon will bind to the deficient enzyme to form a four-subunit complex. Neither four-subunit enzyme binds to depleted membranes. The epsilon subunit, does, however, slightly improve the binding affinity between delta and delta-deficient enzyme suggesting a possible interaction between the two subunits. Neither subunit binds to trypsin-treated ECF1, which contains only the alpha and beta subunits. A role for gamma in the binding of epsilon to F1 is suggested. epsilon does not bind to ECF1-depleted membranes. Therefore, the in vitro reconstitution of depleted membranes requires an initial complex formation between epsilon and the rest of ECF1 prior to membrane attachment. Reconstitution experiments indicate that only one epsilon is required per functional ECF1 molecule.  相似文献   

19.
Subunit structure of the lysosomal H+-ATPase was investigated using cold inactivation, immunological cross-reactivity with antibodies against individual subunits of the H+-ATPase from chromaffin granules and chemical modification with N,N'-dicyclohexyl[14C]carbodiimide. The lysosomal H+-ATPase was irreversibly inhibited when incubated at 0 degrees C in the presence of chloride or nitrate and MgATP. Inactivation in the cold resulted in the release of several polypeptides (72, 57, 41, 34 and 33 kDa) from the membrane, which had the same electrophoretic mobility as the corresponding subunits of chromaffin granule H+-ATPase. Cross-reactivity of antibodies revealed that the 72, 57 and 34 kDa polypeptides were immunologically identical to the corresponding subunits of chromaffin granule H+-ATPase. Dicyclohexylcarbodiimide, which inhibits proton translocation in the vacuolar ATPase, predominantly labeled two polypeptides of 18 and 15 kDa, which compose the membrane sector of the enzyme. These results suggest that the lysosomal H+-ATPase is a multimeric enzyme, whose subunit structure is similar to the chromaffin granule H+-ATPase. The subunit structure of other vacuolar H+-ATPases, revealed by cold inactivation and immunological cross-reactivity, is also presented.  相似文献   

20.
A short sequence motif rich in glycine residues, Gly-X-X-X-X-Gly-Lys-Thr/Ser, has been found in many nucleotide-binding proteins including the beta subunit of Escherichia coli H(+)-ATPase (Gly-Gly-Ala-Gly-Val-Gly-Lys-Thr, residues 149-156). The following mutations were introduced in this region of the cloned E. coli unc operon carried by a plasmid pBWU1: Ala-151----Pro or Val; insertion of a Gly residue between Lys-155 and Thr-156; and replacement of the region by the corresponding sequence of adenylate kinase (Gly-Gly-Pro-Gly-Ser-Gly-Lys-Gly-Thr) or p21 ras protein (ras) (Gly-Ala-Gly-Gly-Val-Gly-Lys-Ser). All F0F1 subunits were synthesized in the deletion strain of the unc operon-dependent on pBWU1 with mutations, and essentially the same amounts of H(+)-ATPase with these mutant beta subunits were found in membranes. The adenylate kinase and Gly insertion mutants showed no oxidative phosphorylation or ATPase activity, whereas the Pro-151 mutants had higher ATPase activity than the wild-type, and the Val-151 and ras mutants had significant activity. It is striking that the enzyme with the ras mutation (differing in three amino acids from the beta sequence) had about half the membrane ATPase activity of the wild-type. These results together with the simulated three-dimensional structures of the wild-type and mutant sequences suggest that in mutant beta subunits with no ATPase activity projection of Thr-156 residues was opposite to that in the wild-type, and that the size and direction of projection of residue 151 are important for the enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号