首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Henry Danielsson 《Steroids》1973,22(5):667-676
Various taurine-conjugated bile acids were fed to rats at the 1%-level in the diet for 3 or 7 days and the effect on several hydroxylations involved in the biosynthesis and metabolism of bile acids was studied. The hydroxylations studied were all catalyzed by the microsomal fraction of liver homogenate fortified with NADPH. The 7α-hydroxylation of cholesterol was inhibited by feeding taurocholic acid, taurocheno-deoxycholic acid and taurodeoxycholic acid for 3 as well as 7 days. No marked inhibition was obtained with taurohyodeoxycholic acid or taurolithocholic acid. The 12α-hydroxylation of 7α-hydroxy-4-cholesten-3-one was inhibited after 3 as well as 7 days by all bile acids except taurohyodeoxycholic acid. With this acid a marked stimulation of 12α-hydroxylation was observed. The effects of the different bile acids on the 7α-hydroxylation of taurodeoxycholic acid were not very marked. The 6β-hydroxylation of lithocholie acid and taurochenodeoxycholic acid was stimulated by taurocholic acid and taurodeoxycholic acid. The reaction was inhibited by taurochenodeoxycholic acid, at least after 7 days. Taurohyodeoxycholic acid inhibited the 6β-hydroxylation slightly and taurolithocholic acid had no effect. The results were discussed in the light of present knowledge concerning mechanisms of regulation of formation and metabolism of bile acids and it was suggested that the mechanisms may be more complex than previously thought.  相似文献   

2.
3.
Identification of unconjugated bile acids in human bile   总被引:1,自引:0,他引:1  
Unconjugated bile acids in the bile of healthy and diseased humans were determined qualitatively and quantitatively by means of gas-liquid chromatography and gas-liquid chromatography-mass spectrometry, after their isolation by ion-exchange chromatography. In a healthy person and three patients with cholelithiasis, unconjugated bile acids comprised 0.1-0.4% of total biliary bile acids. The bile acid composition of the unconjugated fraction was quite different from that of the glycine- or taurine-conjugate fraction, in that it contained a relatively large proportion of unusual bile acids including C23 and C27 bile acids. In two patients with cerebrotendinous xanthomatosis, C22 and C23 bile acids were the major constituents of the biliary unconjugated bile acids, and comprised about 0.8% of total bile acids; no detectable amounts of C27 bile acids were found in their bile. The analysis of biliary unconjugated bile acids may be useful for the diagnosis of metabolic diseases concerning bile acids, particularly the accumulation or disappearance of unusual bile acids.  相似文献   

4.
5.
6.
Endocrine functions of bile acids   总被引:11,自引:0,他引:11       下载免费PDF全文
Bile acids (BAs), a group of structurally diverse molecules that are primarily synthesized in the liver from cholesterol, are the chief components of bile. Besides their well-established roles in dietary lipid absorption and cholesterol homeostasis, it has recently emerged that BAs are also signaling molecules, with systemic endocrine functions. BAs activate mitogen-activated protein kinase pathways, are ligands for the G-protein-coupled receptor TGR5, and activate nuclear hormone receptors such as farnesoid X receptor alpha. Through activation of these diverse signaling pathways, BAs can regulate their own enterohepatic circulation, but also triglyceride, cholesterol, energy, and glucose homeostasis. Thus, BA-controlled signaling pathways are promising novel drug targets to treat common metabolic diseases, such as obesity, type II diabetes, hyperlipidemia, and atherosclerosis.  相似文献   

7.
Bile acids originate from the liver and are transported via bile to the intestines where they perform an important role in the absorption of lipids and lipid-soluble nutrients. Most of the bile acids are reclaimed from the terminal ileum and returned to the liver via portal blood for reuse. The transport of bile acids is vectorial in both liver and intestinal cells, originating and terminating at opposite poles. Bile acids enter through the basolateral pole in liver cells, and through the apical pole in intestinal cells. During the past decade, much has been learned about the mechanisms by which bile acids enter and exit liver and intestinal cells. By contrast, the mechanisms by which bile acids are transported across cells remain poorly understood. The current body of evidence suggests that bile acids do not traverse the cell by vesicular transport. Although a carrier-mediated mechanism is a likely alternative, only a handful of intracellular proteins capable of binding bile acids have been described. The significance of these proteins in the intracellular transport of bile acids remains to be tested.  相似文献   

8.
The dissociation constants for the carboxyl group of a series of glycine (N-acyl)-conjugated and unconjugated bile acids were determined by potentiometric titration using dimethylsulfoxide-water and methanol-water mixtures of varying proportions. The pKa values in water were calculated by extrapolating the experimental values determined in different mole fractions of the organic solvent mixtures. The following values were obtained: 3.9 +/- 0.1 for glycine-conjugated bile acids and 5.0 +/- 0.1 for unconjugated bile acids, as general pKa values for the two classes of bile acids, respectively. The amidation of bile acids with glycine lowers the pKa value because of the proximity of the amide bond to the terminal carboxyl group. Bile acid dissociation constants are independent of the substituents in the steroid nucleus, since inductive effects of the hydroxyl groups on the steroid nucleus are too distant from the acidic group at the end of the side chain to influence its ionization.  相似文献   

9.
10.
11.
Bile acids, the end products of cholesterol metabolism in the liver, are of vital importance in the tissue distribution of cholesterol. Abnormalities in cholesterol biosynthesis or metabolism are often reflected in the proportions, concentrations and conjugation of bile acids in various tissues and determination of bile acids in these tissues is important in the diagnosis of hepatobiliary diseases. Several methods for quantitative determination of bile acids in biological fluids are known and have been reviewed. In this review, we have discussed the gas-chromatographic method for determination of bile acids with special reference to bile acid quantitation in plasma, bile, urine and stool.  相似文献   

12.
Determination of individual conjugated bile acids in human bile   总被引:1,自引:0,他引:1  
A method has been developed and validated for the determination of the six major conjugated bile acids, cholesterol, and total phospholipids in bile of human subjects previously injected with 4-(14)C-cholesterol. The procedure is designed for use with 5-10 ml of duodenal or T-tube bile and eliminates difficulties associated with existing methods for bile acid determination, in particular the requirement for preliminary saponification under pressure or the use of paper chromatography. Saponification under pressure is employed only in steps where partial destruction of the steroid moiety of conjugated bile acids is not a crucial matter. A preliminary Folch extraction and washing step separated free cholesterol and phospholipids (bottom layer) from the six major conjugated bile acids (top layer). The conjugated bile acids were then fractionated cleanly by thin-layer chromatography to give four groups, the (14)C content of each of which was determined. A second aliquot of the top layer was used to determine (after deconjugation) the radioactivity ratio of deoxycholic acid to chenodeoxycholic acid for the two unresolved groups (dihydroxycholanoic acid conjugates with glycine and taurine, respectively). A third aliquot was used for determination of specific activities of the methyl esters of cholic, chenodeoxycholic, and deoxycholic acids derived from the total bile salts. Appropriate calculations yielded the concentration in bile of all six major bile acid conjugates.  相似文献   

13.
The common bile acids of rat bile (chenodeoxycholic, hyodeoxycholic, cholic, alpha-muricholic, and beta-muricholic acids) are completely separated by a new thin-layer chromatographic system.  相似文献   

14.
15.
16.
17.
1. A method is described for the quantitative isolation of bile acids from cellular material. Homogenates of rat liver are freeze-dried and extracted exhaustively with 95% (v/v) ethanol containing 0·1% (v/v) of aq. ammonia (sp.gr. 0·88) and purified by anion-exchange chromatography on Amberlyst A-26. 2. The extracted bile acid conjugates are subjected to either of two hydrolytic procedures, one involving chemical and the other enzymic agents. A unique feature in this study is the introduction of an enzyme, a clostridial peptide-bond hydrolase, for the rapid cleavage of bile acid conjugates, replacing the classical drastic chemical hydrolysis with strong alkali. 3. After hydrolysis, free bile acids are methylated and converted into their trifluoroacetates for final determination by gas–liquid chromatography on a triple component column, FS-1265–SE30–NGS. 4. For the purpose of identification of peaks, bile acid methyl esters are converted into their trimethylsilyl ethers by allowing the methyl esters to react with a new and potent silyl donor, bis(trimethylsilyl)acetamide. 5. The technique affords us a means of studying the metabolism of bile acids at the cellular and subcellular levels in tissues.  相似文献   

18.
Aerobic catabolism of bile acids.   总被引:2,自引:2,他引:0       下载免费PDF全文
Seventy-eight stable cultures obtained by enrichment on media containing ox bile or a single bile acid were able to utilize one or more bile acids, as well as components of ox bile, as primary carbon sources for growth. All isolates were obligate aerobes, and most (70) were typical (48) or atypical (22) Pseudomonas strains, the remainder (8) being gram-positive actinomycetes. Of six Pseudomonas isolates selected for further study, five produced predominantly acidic catabolites after growth on glycocholic acid, but the sixth, Pseudomonas sp. ATCC 31752, accumulated as the principal product a neutral steroid catabolite. Optimum growth of Pseudomonas sp. ATCC 31752 on ox bile occurred at pH 7 to 8 and from 25 to 30 degrees C. No additional nutrients were required to sustain good growth, but growth was stimulated by the addition of ammonium sulfate and yeast extract. Good growth was obtained with a bile solids content of 40 g/liter in shaken flasks. A near-theoretical yield of neutral steroid catabolites, comprising a major (greater than 50%) and three minor products, was obtained from fermentor growth of ATCC 31752 in 6.7 g of ox bile solids per liter. The possible commercial exploitation of these findings to produce steroid drug intermediates for the pharmaceutical industry is discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号